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A generating function algorithm that allows the calculation of the optical response of coupled
exciton-phonon systems is developed. For a model of assemblies of three-level molecules coupled
via dipole interaction and interacting linearly with nuclear degrees of freedom, we derive a closed
set of equations of motion for five generating functions representing the exact response to third
order in the external field. These are equivalent to an infinite hierarchy of equations of motion for
phonon-assisted variables. Starting with the equations for the generating functions, several reduction
schemes are derived. By eliminating the phonon degrees of freedom in favor of self-energies, the
Haken-Strobl model of relaxation is recovered as a limiting case. A set of time-local equations is
presented extending the Haken-Strobl treatment by keeping the temperature dependence as well as
the excitonic signatures of the phonon self-energies. Finally, we derive equations that interpolate
between the coherent and incoherent limits of exciton propagation and properly include the two
exciton dynamics.
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I. INTRODUCTION

Optical properties of molecular aggregates have been the focus of in-
tensive recent experimental[1–4] as well as theoretical[5, 6] investigations,
because of their importance for many technological applications (e.g. J-
aggregates) [7–10] and for biological systems (photosynthetic antenna com-
plexes and the reaction center) [11–14]. A further stimulation for theoret-
ical studies comes from the fact that the nonlinear optical response of
these systems is known to exhibit characteristic signatures of electronic
correlation effects[15–19]. The calculation of this response therefore pro-
vides a nontrivial testing ground for theories which go beyond the mean
field description, known as local field approximation (LFA). In the ideal-
ized limiting case, where interactions of the electronic system with a bath
(phonons or impurities) can be neglected, these correlations show up in the
nonlinear optical response functions only via the two exciton scattering ma-
trix [19, 20]. The coupling to a phonon bath adds new degrees of freedom
which in turn can affect the excitonic dynamics in a variety of ways. The
most obvious effect of the exciton phonon coupling is that it contributes
to the dephasing of excitonic variables and thus introduces characteristic
relaxation timescales in the electronic subsystem. For many experimental
situations this is the dominant influence of the exciton phonon coupling
and simplified descriptions are appropriate; The well known Haken-Strobl
model [24] is an examples for such a simplified scheme. It describes co-
herent and incoherent exciton dynamics in a unified framework. Its main
deficiency is that it is an infinite temperature approximation and does not
contain the proper detailed balance relation, that is essential for the de-
scription of incoherent motion, as is the case when using the Förster rate
equations [21–23]. Some aspects of the coupling to phonons can however
only be understood when also the phonon system is treated explicitly. Ex-
amples are memory effects like the Urbach tail [25–27] or phonon-assisted
beat phenomena which have recently been observed in structured semi-
conductor samples [27, 28]. Another interesting aspect of exciton-phonon
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coupling is that it can lead to new resonances known as dephasing-induced
resonances[29–31].

The purpose of the present article is to analyze the influence of phonons
on optically generated electronic correlations in molecular aggregates. In
section II we specify our model Hamiltonian and relate the optical po-
larization to the relevant dynamical variables. In section III we derive a
closed set of equations of motion for five generating functions representing
phonon-assisted variables. As they stand, these equations are still exact
up to third order in the optical field and thus provide a compact rigorous
starting point for further analysis. A direct numerical solution of these
equations will however in general only be feasible for very simple exciton
phonon coupling schemes. In sections IV and V we therefore use the gener-
ating function approach as a unified starting point to derive several levels
of reduced descriptions relevant for various limiting cases.

II. THE MULTILEVEL-FRENKEL-EXCITON MODEL

Molecular aggregates are adequately described by the Frenkel-exciton
model in Heitler-London approximation[19]. Many applications consider
only a few excited states on each molecule. Often a model with only one
excited state per molecule gives realistic results [17–19]. Here, we treat
explicitly the case with two excited states per site. This is usually sufficient
for the description of pump-probe spectra; a generalization to an arbitrary
number of site excitations is formally straightforward [32, 39]. A convenient
formulation of this molecular three level model is provided by the deformed

Boson representation [39, 40]. The material part of the Hamiltonian reads
(cf. Fig.1):

Hmat ≡ h̄
∑

n

ΩnB†
nBn +

∑

m 6=n

Jnm B†
nBm +

∑

n

gn

2
(B†

n)2(Bn)2 , (1)

Ωn is the fundamental electronic transition frequency of isolated molecules.
The energy of the second level is given by

h̄Ω(2)
n = 2h̄Ωn + ∆n , (2)

with the anharmonicity parameter

∆n = κ2
n gn/2 + (κ2

n − 2) h̄Ωn , (3)

and κn ≡ µ
(21)
n /µ

(10)
n is the ratio between the dipole moments for the

transitions |1〉 → |2〉 (µ
(21)
n ) and |0〉 → |1〉 (µ

(10)
n ≡ µn). We assume that

both transition dipoles of each molecule are oriented along the direction of
the unit vector µ̂n. Jnm accounts for the dipole-dipole interaction as well
as for short-range exchange exciton couplings. B†

n (Bn) are operators for
the creation (annihilation) of excitations on site n. For a three-level model
they obey the following commutation rules

[Bn, Bm] = [B†
n, B†

m] = 0 , (4)

[Bn, B†
m] = δnm{1 − qnB†

nBn + q′n(B†
n)2(Bn)2} , (5)

with qn = 2− κ2
n and q′n = (κ2

n − κ4
n − 1)/κ2

n. Note that when ∆n = 0 and

κn =
√

2 this results in a harmonic level scheme. For κn = 0 the third level
is decoupled and we recover the usual (two-level) Frenkel-exciton model.

The nuclear degrees of freedom enter via the corresponding phonon
modes. This leads to two additional contributions to our model Hamil-
tonian [25, 41, 42]. The first represents the noninteracting phonon system:

Hph ≡
∑

λ

h̄ωλb†λbλ , (6)
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FIG. 1: (A) Basic parameters (energies and transition dipole moments) of a
three level molecule, (B) anharmonic oscillator parameters representing the same
system

while the second accounts for the exciton-phonon coupling:

Hep ≡
∑

nmλ

γλ
nmB†

nBm (b†λ + bλ) . (7)

The operators b†λ (bλ) in (6) and (7) are boson operators describing the
creation (annihilation) of a phonon with frequency ωλ in mode λ. They
obey the commutation relations

[bλ, b†λ′ ] = δλλ′ . (8)

In (7) we kept only terms linear in the phonon amplitudes. Our present
formulation of the phonon coupling is equivalent to equation (2.1) in 32
when we make the identification: γλ

nm = −mλω2
λ ( h̄

2mλωλ
)1/2 dλ,nm, where

mλ is the mass of oscillator λ and dλ,nm is the corresponding displacement
induced by molecular populations (n = m) and intermolecular coherences
(n 6= m) respectively. Similar parameterizations of the interaction with
phonons have been widely used[33–38].

Finally, the interaction with the optical field is given in dipole approxi-
mation by

Hopt ≡ −
∑

n

µn En (Bn + B†
n) , (9)

where En is the component of the optical field in the direction µ̂n of the
molecular dipole at site n.

The total Hamiltonian is

H = Hmat + Hph + Hep + Hopt . (10)

Optical properties are derived from the optical polarization, which is
given by[39, 40]

P (t) =
∑

n

~µn 〈Bn〉(t) + c.c. . (11)

III. GENERATING FUNCTIONS AND THEIR EQUATIONS OF

MOTION

In this section we will derive closed equations of motion necessary for
calculating the optical polarization up to third order in the optical field. We



4

first note, that due to the Heitler-London approximation the expectation
value of a product of p operators B†

n and q operators Bn and an arbitrary

number of phonon operators b†λ ,bλ is at least of order p + q in the external
field, provided the product is in normal order (i.e. all operators B† stand
to the left of the operators B). Physically this is clear, because the only
part of our Hamiltonian that does not conserve the number of excitations
in the system is the dipole coupling to the optical field[18, 19]. A more
formal derivation of this statement can be made along the lines presented
in 43 for the case of direct gap semiconductors.

We now consider the following five operators:

Ânαβ = BnF̂αβ , (12)

B̂nmαβ = BnBmF̂αβ , (13)

Ĉnmαβ = B†
nBmF̂αβ , (14)

D̂lnmαβ = B†
l BnBmF̂αβ , (15)

F̂αβ = F̂ ({αλ}, {βλ}) =

(

∏

λ

exp(αλb†λ)

)(

∏

λ

exp(βλbλ)

)

, (16)

where the sets {αλ} and {βλ} represent arbitrary real parameters. The
shorthand notation α, β in the arguments of these functions denotes the
respective sets of parameters. The expectation values of these operators
are generating functions for phonon-assisted dynamic variables; e.g. in the
case of Anαβ = 〈Ânαβ〉 this means that

∂k

∂αλ1
· · · ∂αλk

∂l

∂βΛ1
· · ·∂βΛl

Anαβ |α=β=0 = 〈Bnb†λ1
· · · b†λk

bΛ1
· · · bΛl

〉 . (17)

Of particular interest is the case k = l = 0 yielding 〈Bn〉 = Anαβ |α=β=0,
because according to (11) 〈Bn〉 is directly related to the polarization. This
means that once we calculate the generating function A the polarization
can be obtained from its values at α = β = 0.

Furthermore, we note that the leading order in the optical field of these
functions can be read off from the number of B† and B operators involved,
e.g. Anαβ = O(E).

Using the Hamiltonian introduced in the last section we can readily set up
the Heisenberg equations of motion for the operators in (12)-(16). Neglect-
ing terms which according to the above considerations do not contribute to
the third order polarization, we obtain the following closed set of equations

ih̄∂tAjαβ =
∑

n

{J̄jn + Λ̂b
jn} (Anαβ − qjDjjnαβ) +

gj

2
κ2

j Djjjαβ

+
∑

nmλ

γλ
nm (βλ − αλ)Dnmjαβ − µj Ej (Fαβ − qjCjjαβ) + h̄ω̂ Ajαβ , (18)

ih̄∂tBijαβ = ξij{
∑

n

(J̄jn + Λ̂b
jn)Binαβ +

∑

n

(J̄in + Λ̂b
in)Bnjαβ}

+δij{κ2
j [
∑

n

(Jjn + Λ̂b
jn)Bjnαβ − µj Ej Ajαβ ] + (∆j + 2h̄Ωj)Bjjαβ}

−ξij{µj Ej Aiαβ + µi Ei Ajαβ} + h̄ω̂ Bijαβ + O(E4) , (19)

ih̄∂tCijαβ =
∑

n

{J̄jn + Λ̂b
jn}Cinαβ −

∑

n

{J̄ni + Λ̂a
ni}Cnjαβ

+µi Ei Ajαβ − µj Ej A∗
iβα + h̄ω̂ Cijαβ + O(E4) , (20)
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ih̄∂tDkijαβ = ξij{
∑

n

(J̄jn + Λ̂b
jn)Dkinαβ +

∑

n

(J̄in + Λ̂b
in)Dknjαβ}

−
∑

n

(J̄nk + Λ̂a
nk)Dnijαβ + µk Ek Bijαβ − ξij{µj Ej Ckiαβ + µi Ei Ckjαβ}

+δij{κ2
j [
∑

n

(Jjn + Λ̂b
jn)Dknjαβ − µjEjCkjαβ ] + (∆j + 2h̄Ωj)Dkjjαβ}

+h̄ω̂ Dkijαβ + O(E5) , (21)

ih̄∂tFαβ =
∑

nmλ

γλ
nm (βλ − αλ)Cnmαβ + h̄ω̂ Fαβ , (22)

with

J̄jm ≡ δjm Ωj + Jjm , ξij = 1 − δij , (23)

ω̂ ≡
∑

λ

ωλ (βλ ∂βλ
− αλ ∂αλ

) , (24)

Λ̂a
jm =

∑

λ

γλ
jm (αλ + ∂αλ

+ ∂βλ
) , Λ̂b

jm =
∑

λ

γλ
jm (βλ + ∂αλ

+ ∂βλ
).

(25)

Throughout this article we write time arguments only to avoid misinter-
pretations. All functions without explicit time arguments are understood
to be taken at time t.

A calculation of the third order polarization based on these equations
consists of the following steps. First one has to calculate the generating
function Fαβ for phonon correlations in thermal equilibrium. Here is the
point where the temperature enters the equations. F is the only of the
five functions that has non zero temperature-dependent values before the
optical excitation. The linear response can be derived from the linearized
equation for A, while the other functions are needed in order to calcu-
late nonlinear optical signals. This procedure is illustrated in appendix A,
where we explicitly treat a simple solvable case[44].

Although the above equations provide a compact way to formulate the
dynamics rigorously up to third order in the exciting field, they obviously
still represent a complicated many-body problem. A direct numerical
scheme based on these equations is therefore only reasonable in limiting
cases with either simplified electron phonon couplings (see appendix A) or
when only a very limited set of phonons is dominantly coupled; e.g. when
the system contains a few high frequency Raman active modes or when
the effect of the phonon bath can be represented using a few collective
oscillators. A theory on the same level of sophistication of equations (18)-
(22) that puts particular emphasis on the latter aspect has recently been
worked out in [32]. In all other cases a less demanding reduced description
is needed.

IV. REDUCED DYNAMICS EXPANDED PERTURBATIVELY

IN EXCITON-PHONON COUPLING

A. Truncating the hierarchy of phonon-assisted variables

One way to derive systematically a reduced computational scheme is to
expand the equations (18)-(22) in a Tayler series around αλ = βλ = 0.
The result is an infinite hierarchy of equations of motion for the set of
all derivatives of the functions A − F with respect to αλ and βλ taken at
the point αλ = βλ = 0. From the generating function property of A − F
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it is clear that these derivatives are nothing but the set of all phonon-

assisted variables 〈Bn〉, 〈Bnbλ〉 , 〈Bnb†λ〉 · · ·. The scheme most often used
to close this hierarchy is to keep only those variables with zero or one

phonon assistance [43, 45, 46]; doubly assisted variables like 〈Bnb†λbλ′〉 are

then factorized according to the recipe 〈Bnb†λbλ〉 ≈ 〈Bn〉nλ δλλ′ , where
nλ = 1/(exp(h̄ωλ/kT ) − 1) is the equilibrium phonon occupation. This
factorization leads to a closed set of equations, because there are only four
purely excitonic variables that contribute to the third order nonlinear re-

sponse, namely 〈Bn〉 , 〈BmBn〉 , 〈B†
mBn〉 and 〈B†

l BmBn〉. Thus, one would
have to solve for these four excitonic variables and for the corresponding
phonon (single) assisted variables. As these equations are still numerically
quite demanding, there is a need for further reduction. Our goal is to
eliminate the phonon-assisted variables in order to obtain a closed set of
equations involving only the excitonic variables. To this end we next an-
alyze a typical equation for a phonon-assisted variable emerging from the
above scheme. We have chosen 〈Bjb

†〉 to be our example. The correspond-
ing equation of motion reads:

ih̄∂t〈Bjb
†
λ〉 =

∑

n

J̄jn〈Bnb†λ〉 − h̄ωλ〈Bjb
†
λ〉 + nλ

∑

n

γλ
jn〈Bn〉

−
∑

nm

γλ
nm〈B†

nBmBj〉 − nλ

∑

n

qj〈B†
jBjBn〉 − qj

∑

n

J̄jn〈B†
jBjBnb†λ〉

+∆j〈B†
jBjBjb

†
λ〉 + µjEjqj〈B†

jBjb
†
λ〉 . (26)

Inversion of (26) leads to two types of terms: (i) Terms leading to con-
tributions of self-energy-type (these are given by the first three terms of
(26) ); (ii) Additional source terms arising from the combined action of the
phonon coupling and the electric field due to deviations from Bose statistics
of the excitations generated by Bn. These additional terms are referred to
in the literature as cross terms and are usually neglected[46].

When we keep only the former contributions, we obtain

〈Bjb
†
λ〉(t) ≈ nλ

∫ t

−∞

∑

nj′

G0
A

j′

j (t − t′) eiωλ(t−t′)γλ
j′n〈Bn〉(t′) dt′. (27)

The one-exciton Green function G0
A

j′

j (t) is given by:

G0
A

j′

j (t) =
θ(t)

ih̄
exp(−iJ̄

t

h̄
)jj′ . (28)

The same procedure can be applied to all relevant phonon-assisted vari-
ables. When the results are then inserted into the equations of motion for
the corresponding excitonic variables, one finally obtains closed equations
of motion for the excitonic degrees of freedom, where the phonons enter
only via self-energies. This strategy results in the following set of equations:

ih̄∂t〈Bj〉 =
∑

n

J̄jn〈Bn〉 − µjEj(1 − qj〈B†
jBj〉) + ∆j〈B†

jBjBj〉

−qj

∑

n

Jjn〈B†
jBjBn〉 +

∫ t

−∞

∑

j′

h̄ΩB(t − t′)j′

j 〈Bj′ 〉(t′) dt′ , (29)

ih̄∂t〈BiBj〉 = ξij{
∑

n

(J̄jn〈BiBn〉 + J̄in〈BnBj〉) − µiEi〈Bj〉 − µjEj〈Bi〉}

+δij{κ2
j(
∑

n

Jjn〈BjBn〉 − µjEj〈Bj〉) + (∆j + 2h̄Ωj)〈BjBj〉}
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+

∫ t

−∞

∑

i′j′

h̄ΩBB(t − t′)i′

i
j′

j 〈Bi′Bj′ 〉(t′) dt′, (30)

ih̄∂t〈B†
i Bj〉 =

∑

n

(J̄jn〈B†
i Bn〉 − J̄ni〈B†

nBj〉) + µiEi〈Bj〉 − µjEj〈Bi〉∗

+

∫ t

−∞

∑

i′j′

h̄ΩB†B(t − t′)i′

i
j′

j 〈B†
i′Bj′〉(t′) dt′, (31)

ih̄∂t〈B†
kBiBj〉 = µkEk〈BiBj〉 −

∑

n

J̄nk〈B†
nBiBj〉

+ξij{
∑

n

(J̄in〈B†
kBnBj〉 + J̄jn〈B†

kBiBn〉) − µiEi〈B†
kBj〉 − µjEj〈B†

kBi〉}

+δij{κ2
j(
∑

n

Jjn〈B†
kBnBj〉 − µjEj〈B†

kBj〉) + (∆j + 2h̄Ωj)〈B†
kBjBj〉}

+

∫ t

−∞

∑

k′i′j′

h̄ΩB†BB(t − t′)k′

k
i′

i
j′

j 〈B†
k′Bi′Bj′〉(t′) dt′, (32)

where the phonon induced self-energies are given by:

h̄ΩB(t)j′

j =
∑

nm

Γjnmj′ (t)G0
A

m

n (t) , (33)

h̄ΩBB(t)i′

i
j′

j =

(ξij + δijκ
2
j){
∑

nm

(Γjnmj′ (t) ξi′m G0
B

i′

i
m
n (t) + Γjnmi′ (t) ξmj′ G0

B
m
i

j′

n (t))

+κ2
i′

∑

n

Γjni′j′ (t)G0
B

i′

i
i′

n(t)}

+ξij{
∑

nm

(Γinmj′ (t) ξi′m G0
B

i′

n
m
j (t) + Γinmi′(t) ξmj′ G0

B
m
n

j′

j (t))

+κ2
i′

∑

n

Γini′j′ (t)G0
B

i′

n
i′

j (t)} , (34)

h̄ΩB†B(t)i′

i
j′

j =
∑

nm

{Γ∗
inmi′(t)G0

C
m
n

j′

j (t) − Γ∗
njmi′ (t)G0

C
m
i

j′

n (t)

+Γjnmj′(t)G0
C

i′

i
m
n (t) − Γnimj′ (t)G0

C
i′

n
m
j (t)} , (35)

h̄ΩB†BB(t)k′

k
i′

i
j′

j =

ξij{
∑

nm

(Γinmj′ (t) ξi′m G0
D

k′

k
i′

n
m
j (t) + Γinmi′ (t) ξmj′ G0

D
k′

k
m
n

j′

j (t))

+κ2
i′

∑

n

Γini′j′ (t)G0
D

k′

k
i′

n
i′

j (t) −
∑

nm

Γ∗
nimk′(t)G0

D
m
k

i′

n
j′

j (t)}

+(ξij + δijκ
2
j){
∑

nm

(Γjnmj′ (t) ξi′m G0
D

k′

k
i′

i
m
n (t) + Γjnmi′ (t) ξmj′ G0

D
k′

k
m
n

j′

i (t))

+κ2
i′

∑

n

Γjni′j′ (t)G0
D

k′

k
i′

i
i′

n(t) −
∑

nm

Γ∗
njmk′ (t)G0

D
m
k

i′

i
j′

n (t)}

−
∑

nm

Γnkmi′(t) ξmj′G
0
D

k′

n
m
i

j′

j (t) −
∑

nm

Γnkmj′ (t) ξi′mG0
D

k′

n
i′

i
m
j (t)

−κ2
i′

∑

n

Γnki′j′ (t)G0
D

k′

n
i′

i
i′

j (t) +
∑

nm

Γ∗
knmk′ (t)G0

D
m
n

i′

i
j′

j (t) , (36)
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with :

Γmnij(t) =
∑

λ

γλ
mn γλ

ij ḡλ(t) , (37)

ḡλn
(t) = (nλn

+ 1) e−iωλnt + nλn
eiωλn t . (38)

The Green functions entering the self-energies correspond to the respective
phonon-free problems. The one exciton Green function GA has been defined
in (28). It has been shown previously [19, 39, 40] that the two exciton Green
function GB can be constructed from GA by explicit calculation of the two
exciton scattering matrix. The two remaining Green functions are given
by

G0
C

i′

i
j′

j (t) =
h̄

i
G0

A
i′

i (t)∗ G0
A

j′

j (t) , (39)

G0
D

k′

k
i′

i
j′

j (t) =
h̄

i
G0

A
k′

k (t)∗ G0
B

i′

i
j′

j (t) . (40)

Thus, all quantities needed to calculate the phonon self-energies from (33)-
(36) are explicitly known.

The procedure described above to deal with the coupling of nuclear de-
grees of freedom has lead to many succesful applications in the theory
of semiconductor optics [43, 45, 46, 48–50]. Furthermore, it has been
recognized [46, 51] that the results are identical to those obtained from
diagrammatic Green function approaches. In contrast to our approach,
Green funktion methods keep track of multitime expectation values such

as 〈B†
i (t)Bj(t

′)〉 e.g. by solving the Bethe Salpeter equation [6]. Among the
problems that can be addressed on this level of sophistication are the micro-
scopic modeling of pure dephasing [43, 45, 46], memory effects like the Ur-
bach tail absorbtion[26, 27, 52], collisional broadening and retardation[46]
as well as beats with the phonon-assisted variables[27, 51]. Several au-
thors,however, have pointed out [27, 46, 53] that the truncation scheme
that factorizes double assisted variables might under certain circumstances
lead to unphysical predictions when the resulting memory kernel is fully
kept. This deficiency can be overcome when the hierarchy of equations for
phonon-assisted variables is closed on the next higher level[46]. The main
effect of this extended scheme is that the equations of motion for variables
with a single phonon assistance are supplemented by a self-energy result-
ing from the coupling to higher levels of the hierarchy. Also the coupling
to additional bath degrees of freedom is expected to have a similar effect.
In many cases a simple yet reasonable modeling is obtained by allowing
the phonon frequencies ωλ to be complex valued [27, 46, 51]. Another
suggestion [53] to remedy this shortcoming amounts to the introduction
of quasiparticle corrections depending on the phonon density based on an
analysis of the exactly solvable Jaynes Cummings model.

Most of the worked out examples have treated electronic correlations re-
sulting from exciton exciton interactions only on a mean field level. How-
ever, the question how the combined action of excitonic interactions and
bath couplings affects the observed signals is of great importance. A partic-
ular interesting aspect is that the gradual loss of coherence brought about
by the phonon coupling not only leads to dephasing of excitonic transitions;
at the same time it builds up new dynamic variables. To illustrate the latter

point consider the variable 〈B†
i Bj〉 repesenting exciton coherences (i 6= j)

and populations (i = j). It can be shown that 〈B†
i Bj〉 factorizes in the

phonon-free case as

〈B†
i Bj〉 → 〈Bi〉∗〈Bj〉 + O(E4) . (41)
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For Boson fields, like the electromagnetic field, it is customary to take
factorization properties like (41), where intensities are factorized into tran-
sition amplitudes, as a definition of the coherence of these fields. Excitons
behave like Bosons only in the low density regime. Therefore even with-
out phonons the factorization (41) does no longer hold when higher order
optical excitations are considered. The corrections to (41) brought in by
the phonons already in order O(E2) are not related to the non bosonic
nature of excitons; rather they account for the gradual loss of coherence of
the excitonic system after optical excitation due to the exchange of energy
and momentum with the phonon bath. Analogous considerations apply to

〈B†
kBiBj〉, which in the phonon-free case factorizes like

〈B†
kBiBj〉 → 〈Bk〉∗〈BiBj〉 + O(E5) . (42)

Thus 〈B†
i Bj〉 and 〈B†

kBiBj〉 become dynamic variables in their own right
only due to the dephasing action of the phonons.

On the other hand, calculations that include variables like 〈B†
i Bj〉 and

〈B†
kBiBj〉 can easily become time demanding. Keeping the treatment of

phonons simple is therefore a must in these cases. Memory effects of the
phonon system are not essential for studies of the questions as to how the
interrelations between the various excitonic variables are affected by the
coupling to nuclear degrees of freedom. Thus, it is worthwhile to work out
in detail a time local version of the equations in order to provide a suitable
starting point for numerical investigations. Such a treatment neglecting
memory effects is in the literature often referred to as Markovian theory
[45, 48, 54, 55]. It should be pointed out, that this name does not imply,
that the dynamics represents a Markov process in the sence of the the-
ory of stochastic processes[56]. We will present the relevant equations in
subsection IVC after we have shown in the next subsection how the well
known Haken-Strobl model for relaxation is recovered as a limiting case of
our equations.

B. The Haken-Strobl limit

The Haken-Strobl model of exciton-dephasing [19, 24] marks the extreme
case of a relaxation theory without bath induced memory effects. In order
to derive it from our expressions for the phonon self-energies (equations
(33)-(36)) we assume that each molecule has its own phonon bath coupled
locally only to the corresponding site. The exciton-phonon coupling then
assumes the form:

γλ
ij = γλl δij δil , , (43)

where λl labels the phonon modes coupled to site l. In this case the self-
energies simplify to:

h̄ΩB(t)j′

j = δjj′Γj(t)G0
A

j

j(t) =: δjj′ h̄ΩB(t)j , (44)

h̄ΩBB(t)i′

i
j′

j = G0
B

i′

i
j′

j (t) ×
×{(ξij + δijκ

2
j) [ξi′j′ (δji′ + δjj′ ) + κ2

i′ δi′j′ δjj′ ]Γj(t)

+ξij [ξi′j′ (δii′ + δij′ ) + κ2
i′ δi′j′ δii′ ]Γi(t)} , (45)

h̄ΩB†B(t)i′

i
j′

j = G0
C

i′

i
j′

j (t) ×
×{Γ∗

i (t) δii′ − Γ∗
j (t) δji′ + Γj(t) δjj′ − Γi(t) δij′} , (46)
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h̄ΩB†BB(t)k′

k
i′

i
j′

j = G0
D

k′

k
i′

i
j′

j (t) ×
×{ξij [Γi(t) (ξi′j′ (δii′ + δij′ )) + κ2

i′ δi′j′ δii′) − Γ∗
i (t) δik′ ]

+(ξij + δijκ
2
j)[Γj(t) (ξi′j′ (δji′ + δjj′ ) + κ2

i′ δi′j′ δjj′ ) − Γ∗
j (t) δjk′ ]

−Γk(t) [ξi′j′ δki′ + δkj′ ) + κ2
i′ δi′j′ δki′ ] + Γ∗

k(t) δkk′} , (47)

with :

Γj(t) =
∑

λj

|γλj |2 ḡλj
(t) . (48)

From these equations, the Haken-Strobl model is easily recovered in the
limit of a short bath relaxation time, where Γj(t) approaches the form

Γj(t) → Γ̂ δ(t). The Greens functions entering (44)-(47) then have to be
invoked at time t = 0+, where by definition they become δ-functions, e.g.

G0
A

j

j′ (t = 0+) = −i
h̄ δjj′ . Physically this means that the phonon bath is so

fast that the excitonic excitations have no time to impose their spatial and
temporal structure on the relaxation kernel. The self-energies (44)-(47)
therefore assume the form:

h̄ΩB(t)j′

j = δjj′
Γ̂

ih̄
δ(t) , (49)

h̄ΩBB(t)i′

i
j′

j =
Γ̂

ih̄
δ(t) δii′ δjj′ {2ξij + δijκ

4
j} , (50)

h̄ΩB†B(t)i′

i
j′

j =
Γ̂

ih̄
δ(t) δii′ δjj′ 2ξij , (51)

h̄ΩB†BB(t)k′

k
i′

i
j′

j =
Γ̂

ih̄
δ(t) δkk′ δii′ δjj′ ×

×{ξij (3 − 2δki − 2δkj) + δij(1 + κ4
j − 2δkj κ2

j )} . (52)

Equations (49)-(52) have previously been derived [19] for the case κj = 0,
i.e. the case of Frenkel excitons with only one excitation per site (two-
level molecules). Finally we note, that it immediatly follows from the

definition (48) of Γj(t) that the limit Γj(t) → Γ̂ δ(t) corresponds to a broad
distribution of phonon frequencies and high temperatures. In addition it
has to be assumed that the coupling strength to the bath is independent
of the site, thereby excluding the possibility that different sites might be
exposed to different environments. The limit Γj(t) → Γ̂ δ(t) can also be
reached, when the phonon-assisted variables are strongly damped due to
the coupling either to higher order assited variables or to additional bath
degrees of freedom.

C. Finite Temperature theory with time-local bath influence

Although the Haken-Strobl model already allows the qualitative discus-
sion of many aspects related to exciton bath interactions, it obviously
represents an extreme limiting case. To address questions like the tem-
perature dependence of the bath interaction, a less restrictive scheme is
needed. Furthermore, we have seen that an ultrafast bath leads to δ-like
spatial behavior, while in less extreme situations excitonic structures can
be imposed on the relaxation kernel thereby opening otherwise forbidden
relaxation channels. In this subsection we derive an approximation scheme
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that keeps the temperature dependence as well as the excitonic structure
of the relaxation kernel, while still providing equations where the coupling
to the phonons is local in time.

We will take equations (29)-(32) as our starting point. Our goal is to
calculate the third order optical response. To be specific we consider the
three electric fields generating this response to be of the form

~E(a)(t) = Ē(a)(t)~e(a) e−iωat + c.c. , a = 1, 2, 3 (53)

i.e. we assume that the fields are polarized in directions ~e(a) and have
well defined central frequencies ωa, which implies that the pulse envelopes
Ē(a)(t) should be slowly variing on the timescale defined by the optical
frequencies. We also neglect the spatial dependence of the fields, which is
justified when their wavelengths are long compared to the extend of the

sample. In this limit the dependence on the wavevectors ~ka is only needed
for bookkeeping purposes in order to determine in which phase matching
direction a certain component is emitted. As this dependence is trivial we
suppresed it in our notation.

The third order optical response predicted by equations (29)-(32) can
be constructed using an iterative procedure: first solving for the linear
response, than inserting the result of the first step to derive the sources
for second order contributions and finally using the first and second or-
der results to determine the third order response. For example, the rele-
vant equation which determines the linear response generated by the pulse
Ē(a)(t) e−iωat according to (29) reads in frequency space

h̄ω〈Bj〉(a)(ω) =
∑

n

J̄jn〈Bn〉(a)(ω) − µjĒ
(a)(ω − ωa)

+
∑

j′

h̄ΩB(ω)j′

j 〈Bj′〉(a)(ω) . (54)

For the Fourier transformation connecting time domain functions to their
frequency domain representations we use the convention

f(t) =

∫ ∞

−∞

1

2π
e−iωt f(ω) dω . (55)

The source term Ē(a)(ω − ωa) in equation (54) is under the conditions
stated above a function that has non zero values only in a finite frequency

range centered at ωa. If the self-energy h̄ΩB(ω)j′

j is slowly varying in this

frequency range it can be replaced by its value h̄ΩB(ωa)j′

j taken at ω = ωa.
Transforming back to the time domain we obtain an equation with a phonon
coupling local in time

ih̄∂t〈Bj〉(a) =
∑

n

J̄jn〈Bn〉(a) − µjĒ
(a) e−iωat

+
∑

j′

ih̄ℑm(ΩB)(ωa)j′

j 〈Bj′ 〉(a) . (56)

As is common we keep only the imaginary part of the self-energy, because
the energy shifts brought forth by the real part can be acounted for by using
renormalized values of the material parameters. Obviously, the conditions
under which (56) has been derived are less restrictive than the conditions
required by the Haken-Strobl model. The case that the phonons are cou-
pled as a sufficiently broad distribution in frequency is not the only case

where h̄ΩB(ωa)j′

j can be a slowly variing function in the frequency range
covered by the laser pulse. To give an example one can think of a single
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LO phonon with frequency ωLO in a semiconductor. In this case the line-

shape of h̄ΩB(ωa)j′

j is a linear superposition of the phonon-free absorption

spectrum shifted by ±ωLO [43]. The self-energy h̄ΩB(ωa)j′

j will be a flat
function in the relevant frequency range when the semiconductor is reso-
nantly excited at the exciton frequency as long as the laser bandwidth is
smaller than the phonon frequency, which is a typical situation[43].

To second order in the laser field, two functions have to be calculated:

(i) the two exciton transition density 〈BiBj〉 and (ii) the function 〈B†
i Bj〉

describing excitonic coherences and occupation densities. Inserting the
results of the calculation of the linear response into equations (30) and (31)
it can be seen that the total sources leading to second order contributions
can be split into components with well defined central frequencies. For each
frequency component, the same procedure outlined above can be applied.
In this way we obtain for the component 〈BiBj〉(a,b) of the two exciton
transition density with central frequency ωa + ωb generated by the pulses
a and b the following equation

ih̄∂t〈BiBj〉(a,b) = ξij{
∑

n

(J̄jn〈BiBn〉(a,b) + J̄in〈BnBj〉(a,b))

−Ē(a)e−iωat[µi〈Bj〉(b) + µj〈Bi〉(b)] − Ē(b)e−iωbt[µi〈Bj〉(a) + µj〈Bi〉(a)]}
+δij{κ2

j(
∑

n

Jjn〈BjBn〉(a,b) − µj [Ē
(a)e−iωat〈Bj〉(b) + Ē(b)e−iωbt〈Bj〉(a)])

+(∆j + 2h̄Ωj)〈BjBj〉(a,b)}
+
∑

i′j′

ih̄ℑm(ΩBB)(ωa + ωb)
i′

i
j′

j 〈Bi′Bj′〉(a,b) , (57)

while the component 〈B†
i Bj〉(−a,b) with central frequency ωb −ωa resulting

from pulses a and b has to be calculated from

ih̄∂t〈B†
i Bj〉(−a,b) =

∑

n

(J̄jn〈B†
i Bn〉(−a,b) − J̄ni〈B†

nBj〉(−a,b))

+µi(Ē
(a)∗eiωat〈Bj〉(b) + Ē(b)e−iωbt〈Bj〉(−a)) − µj(Ē

(b)e−iωbt〈Bi〉(a)∗

+Ē(a)∗eiωat〈Bi〉(−b)∗) +
∑

i′j′

ih̄ℑm(ΩB†B)(ωb − ωa)i′

i
j′

j 〈B†
i′Bj′ 〉(−a,b) .

(58)

When the laser frequencies are tuned in resonance with the excitonic tran-
sition, it is posible to neglect the source terms proportional to 〈Bj〉(−a)

and 〈Bi〉(−b)∗ in (58), because in this case they are small compared to the
contributions proportional to 〈Bi〉(a)∗ or 〈Bj〉(b). This is known as the
rotating wave approximation (RWA).

Proceeding along the same lines, we find the following equations for the
third order variables

ih̄∂t〈B†
kBiBj〉(−a,b,c) = µkĒ(a)∗ eiωat〈BiBj〉(b,c) −

∑

n

J̄nk〈B†
nBiBj〉(−a,b,c)

+ξij{
∑

n

(J̄in〈B†
kBnBj〉(−a,b,c) + J̄jn〈B†

kBiBn〉(−a,b,c))

−µiĒ
(b) e−iωbt〈B†

kBj〉(−a,c) − µiĒ
(c) e−iωct〈B†

kBj〉(−a,b)

−µjĒ
(b) e−iωbt〈B†

kBi〉(−a,c) − µjĒ
(c) e−iωct〈B†

kBi〉(−a,b)}
+δij{κ2

j(
∑

n

Jjn〈B†
kBnBj〉(−a,b,c) − µjĒ

(b) e−iωbt〈B†
kBj〉(−a,c)

−µjĒ
(c) e−iωct〈B†

kBj〉(−a,b)) + (∆j + 2h̄Ωj)〈B†
kBjBj〉(−a,b,c)}
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+
∑

k′i′j′

ih̄ℑm(ΩB†BB)(ωc + ωb − ωa)k′

k
i′

i
j′

j 〈B†
k′Bi′Bj′ 〉(−a,b,c) , (59)

ih̄∂t〈Bj〉(−a,b,c) =
∑

n

J̄jn〈Bn〉(−a,b,c)

+µj qj{Ē(b) e−iωbt〈B†
jBj〉(−a,c) + Ē(c) e−iωct〈B†

jBj〉(−a,b)}
+∆j〈B†

jBjBj〉(−a,b,c) − qj

∑

n

Jjn〈B†
jBjBn〉(−a,b,c)

+
∑

j′

ih̄ℑm(ΩB)(ωc + ωb − ωa)
j′

j 〈Bj′ 〉(−a,b,c) , (60)

where we have written in (59) and (60) only the resonant contributions
according to the RWA.

When 〈Bj〉(−a,b,c) has been calculated for a given combination of the
pulses a, b, c it can be inserted into (11) resulting in a contribution to the

third order polarization that is radiated in direction ~kc +~kb −~ka with cen-
tral frequency ωc + ωb − ωa. Depending on the experimental setup, only a
subset of all possible contributions to the third order polarization is regis-
tered. This subset is selected by a choice of directions (wavevectors) and/or
a choice of a suitable frequency window to be detected. Equations (56)-(60)
can be used to follow the time evolution of all relevant dynamic variables.
The self-energies entering these equations are the Fourier transforms of
(33)-(36). However, for many applications the simpler form (44)-(47) is
appropriate. Finally the signal is obtained by summing over all contribu-
tions to the third order polarization with the desired wavevectors.

V. UNIFIED DESCRIPTION OF COHERENT AND

INCOHERENT EXCITON DYNAMICS

So far we did not make any distinction between coherent and incoher-
ent exciton dynamics. Therefore, the respective contributions are mixed in
our formulation. In many situations it is desirable to separate these con-
tributions, thus allowing for a greater flexibility in developing appropriate
approximations. The goal of this section is to derive equations that cor-
rectly reproduce both the limit of fully coherent dynamics (i.e. dynamics
without bath coupling) and the incoherent transport limit.

To identify coherent and incoherent contributions we recall that in the
coherent case only the transition densities 〈Bj〉 and 〈BiBj〉 are indepen-

dent dynamical variables. The partial density-like quantities 〈B†
i Bj〉 and

〈B†
kBiBj〉 factorize according to (41) and (42) respectively. We will first

concentrate on 〈B†
i Bj〉. In order to isolate the incoherent part we consider

the function

C̄ijαβ ≡ Cijαβ − A∗
iβα Ajαβ . (61)

According to (20) and (18) C̄ obeys the equation of motion

ih̄∂tC̄ijαβ =
∑

n

{J̄jn + Λb
jn} C̄inαβ −

∑

n

{J̄ni + Λa
ni} C̄njαβ

+h̄ω̂ C̄ijαβ + QC̄ijαβ , (62)

where the source QC̄ is given by

QC̄ijαβ ≡
∑

n

{Anαβ Λjn A∗
iβα − A∗

nβα ΛniAjαβ}

+µi Ei (1 − Fβα) − µj Ej (1 − Fαβ) , (63)
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with

Λjn =
∑

λ

γλ
jn(∂αλ

+ ∂βλ
) .

We find that, taken at the point α = β = 0, C̄ijα=β=0 = 〈B†
i Bj〉−〈Bi〉∗〈Bj〉

represents the deviation of 〈B†
i Bj〉 from its coherent part. Of particular

interest are the diagonal elements Nj = C̄jjα=β=0, because these are the
only components that directly couple to the transition 〈Bj〉 which finally
determines the polarization. As the coherent contribution is split off, Nj

represents the incoherent population on site j. In many cases it is therefore
appropriate to describe the propagation of this variable in configuration
space by a Förster type rate equation. When we again adopt the coupling
scheme (43) the relevant equation reads

h̄∂tNj =
∑

m

(RjmNm − RmjNj) + QNj
. (64)

Within our model, the rates Rmj are readily expressed through the param-
eters of the Hamiltonian as shown in appendix B. When phonon-assisted
variables are eliminated as disscussed before, the source QNj

turns out to
be

QNj
(t) = −iQC̄jjα=β=0

= −i{〈Bj〉(t)
∫ t

−∞

(h̄ΩB(t − t′)j〈Bj〉(t′))∗ dt′

−〈Bj〉(t)∗
∫ t

−∞

h̄ΩB(t − t′)j〈Bj〉(t′)} dt′, (65)

where h̄ΩB is given by (44).

Similar to 〈B†
i Bj〉 we can decompose 〈B†

kBiBj〉 into a coherent and an in-
coherent part, where the former is according to (42) given by 〈Bk〉∗〈BiBj〉.
In order to calculate the transition 〈Bj〉 only the components Zij =

〈B†
i BiBj〉 − 〈Bi〉∗〈BiBj〉 are needed. In appendix B we further show that

in analogy to the incoherent part of 〈B†
i Bj〉, a rate-like equation can be

derived for Zij . But for most purposes it is sufficient to determine Zij from
the factorization ansatz proposed in 17 on the basis of a maximum entropy
argument

Zij ≈ Ni〈Bj〉 + {〈B†
i Bj〉 − 〈Bi〉∗〈Bj〉} 〈Bi〉 . (66)

When the factorization (66) is used to approximate Zij we see that besides

the incoherent population Nj also the deviation 〈B†
i Bj〉 − 〈Bi〉∗〈Bj〉, i 6=

j of the off-diagonal elements of 〈B†
i Bj〉 from their coherent values are

needed. These off-diagonal elements can be eleminated using the same
perturbative procedure with respect to the dipole couplings that lead to
the rates Rij in (64) (cf. appendix B).

Collecting the results of this subsection on the incoherent propagation of
Nj and using the factorization (66) for Zij , these results can be combined
with the coherent time evolution of the transitions 〈Bj〉 and 〈BiBj〉 found
in subsection IVA. Thus, we finally arrive at the following set of dynamic
equations which describe the third order material response

ih̄∂t〈Bj〉 =
∑

n

J̄jn〈Bn〉 − µjEj{1 − qj(〈Bj〉∗〈Bj〉 + Nj)}

−qj

∑

n

{Jjn(〈Bj〉∗〈BjBn〉 + Nj〈Bn〉) + i(R̄jnNn − R̄∗
njNj)〈Bj〉}

+∆j{〈Bj〉∗〈BjBj〉 + 2 Nj〈Bj〉} +

∫ t

−∞

h̄ΩB(t − t′)j〈Bj〉(t′) dt′, (67)
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ih̄∂t〈BiBj〉 = ξij{
∑

n

(J̄jn〈BiBn〉 + J̄in〈BnBj〉) − µiEi〈Bj〉 − µjEj〈Bi〉}

+δij{κ2
j(
∑

n

Jjn〈BjBn〉 − µjEj〈Bj〉) + (∆j + 2h̄Ωj)〈BjBj〉}

+

∫ t

−∞

∑

i′j′

h̄ΩBB(t − t′)i′

i
j′

j 〈Bi′Bj′ 〉(t′) dt′, (68)

h̄∂tNj =
∑

m

(RjmNm − RmjNj) − i{〈Bj〉(t)
∫ t

−∞

(h̄ΩB(t − t′)j〈Bj〉(t′))∗ dt′

−〈Bj〉(t)∗
∫ t

−∞

h̄ΩB(t − t′)j〈Bj〉(t′)} dt′, (69)

where the self-energies h̄ΩB and h̄ΩBB are given by (44) and (45). The
transfer-rates R̄nj in equation (67) are related to the transport rates Rnj

in equation (69) by Rnj = 2ℜe(R̄nj). Explicit formulas relating these rates
to the parameters of our model can be found in appendix B. After decom-
position into components corresponding to well defined central frequencies
as before, time local eqautions can be obtained by replacing the memory
kernels according to the scheme discussed in subsection IVC. The resulting
equations are listed in appendix C.

Clearly these equations correctly reproduce the coherent dynamics in the
limiting case of vanishing phonon interaction, because in this limit there are
no sources for Nj or Zij . Thus, these quantities stay zero in this case. On
the other hand, when the bath influence is strong, the transitions 〈Bj〉 and
〈BiBj〉 will be strongly damped and the dynamics will be dominated by
the incoherent transport described by Nj . Treating coherent and incoher-
ent dynamics together on a commen footing, equations (67)-(69) therefore
interpolate between these extreme limiting cases.

VI. DISCUSSION

Starting from rigorous equations of motion for five generating functions
in the joint phase-space of excitons and nuclei, we obtained reduced descrip-
tions of the coupled exciton phonon dynamics on various levels of sophis-
tication. A treatment keeping memory effects (see section IV A) is needed
for a description of phenomena such as beats of the phonon-assisted vari-
ables. Simpler time-local models can be used to investigate the influence
of the bath on the interplay between the excitonic variables. Such models
are a good compromise between the need to keep the numerical effort on
a resonable level and the desire to realistically model the relevant inter-
actions in the system. In the present paper we presented three time-local
models. The simplest of these is the Haken-Strobl model of relaxation. It
has been shown that this model naturally emerges as a limiting case of the
treatment introduced in section IVC. However,a treatment on the level of
section IVC is required when one intends to address questions like the tem-
perature dependence of pure dephasing. Finally, we have shown in section
V that seperating the incoherent and coherent parts of the dynamics leads
to a compact formulation of their combined dynamics. The distinction
between coherent and incoherent parts of the dynamics is in our formula-
tion intimately related to the distinction between the fast transition-like
varibles 〈Bj〉 and 〈BiBj〉 and the slow population density Nj . Thus iden-
tifying different variables with coherent or incoherent dynamics makes this
distinction particularly transparent. Equations (67)-(69) pinpoint the re-
spective roles of coherent and incoherent contributions in the extreme lim-
iting cases. In intermediate cases they allow for studies of the interplay
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between these contributions on a numerically feasable level. Unlike the
Haken-Strobl model, which also interpolates between these extremes in the
infinite temperature limit, our formulation in section V correctly obeys the
detailed balance relation.
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Appendix A: Green functions for a simple exciton-phonon coupling

scheme

In this appendix we study a simple solvable model [44] for the phonon
coupling using equations (18)-(22) for the relevant generating functions.
The purpose of the following calculations is twofold: (i) we wish to provide
an illustration as to how the generating functions can be used to calculate
optical signals and (ii) the explicit solutions in this simple case give further
insight into the physical significance of the dynamic variables involved.

Our model is defined by the following choice for the exciton-phonon
coupling

γλ
ij = γλ δij . (A1)

As far as the phonon part is concerned, this problem is equivalent to the
independent Boson model discussed in 44. The model can also be thought
of as a limiting case of the standart coupling for periodic systems given by
[25, 41]

γλ
ij = γλ e−iRjqλδij , (A2)

where qλ is the wavevector of the phonon labeled λ. From the point of view
of equation (A2), the approximation (A1) is justified when the coupling γλ

is strongly peaked around qλ ≈ 0, which is e.g. the case for LO phonons
coupled via the Fröhlich mechanism. More precisely it is required that the
spatial extent of the relevant excitonic excitations is small compared to
the wavelengths of all dominantly coupled phonon modes. In such a case
the exchange of energy with the phonon bath is more important than the
exchange of momentum described by the factor e−iRjqλ in (A2).

For simplicity we will only deal with the case κj = 0 in this appendix;
i.e. a system of coupled two level Frenkel excitons.

As explained in section III, we first have to calculate the 0-th order,i.e.
the value of the generating function for phonon correlations F 0

αβ in thermal

equilibrium (cf. (16)). This can be done along the lines described in [44],
finally yielding

F 0
αβ = exp(

∑

µ

nµαµβµ) , (A3)

where nµ = 1/(exp(h̄ωµ/kT )− 1) is the Bose distribution.
Next we calculate the linear response from equation (18). To this end

we construct the corresponding Green function defined as the solution of

ih̄∂tGA
j′

j
α′

α
β′

β (t) =
∑

n

J̄jnGA
j′

n
α′

α
β′

β (t)

+
∑

λ

{γλ (βλ + ∂αλ
+ ∂βλ

) + h̄ωλ (βλ∂βλ
− αλ∂αλ

)}GA
j′

j
α′

α
β′

β (t)

+δ(t) δα′

α δβ′

β δj′

j . (A4)
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For the solution of (A4) we make an ansatz in the form of a phonon
wavepackage with time dependent wavevectors

GA
j′

j
α′

α
β′

β (t) =
θ(t)

ih̄

∫

k

gk
jj′ (t)

∏

µ

(e−i(αµ ak
µ(t)−kαµ α′

µ+βµ bk
µ(t)−β′

µ kβµ) 1

(2π)2
),

(A5)
where the shorthand notation k has been used to represent the set of
wavevectors k = {kαµ

, kβµ
} and the integration over k runs over all mem-

bers of the set each from −∞ to ∞. Insertion into (A4) reveals that the
ansatz (A5) is the solution of (A4) provided the amplitude function gk

jj′ (t)

and the time dependent wavevectors ak
µ(t) and bk

µ(t) for t > 0 solve the
equations

ġk
jj′ =

∑

n

1

ih̄
J̄jn gk

nj′ − gk
jj′

∑

µ

γµ

h̄
(ak

µ + bk
µ) , (A6)

ȧk
µ = iωµ ak

µ , (A7)

ḃk
µ =

γµ

h̄
− iωµ bk

µ , (A8)

with the initial conditions

gk
jj′ (t = 0+) = δjj′ ; ak

µ(t = 0+) = kαµ
; ak

µ(t = 0+) = kβµ
. (A9)

Equations (A6)-(A8) clearly demonstrate that the parameters α,β of the
generating functions are related to simple harmonic oscillator degrees of
freedom. After the elementary solution of these equations is inserted in
(A5), it is easy to perform the integrations over the wavevectors kαµ

, kβµ

leading to

GA
j′

j
α′

α
β′

β (t) = G0
A

j′

j (t) f(t) exp(
∑

µ

βµ
γµ

h̄ωµ
[e−iωµt − 1]) ×

×
∏

µ

δ(αµeiωµt − α′
µ − γµ

h̄ωµ
[eiωµt − 1]) ×

×
∏

µ

δ(βµe−iωµt − β′
µ +

γµ

h̄ωµ
[e−iωµt − 1]) , (A10)

f(t) = exp(
∑

µ

−i
γµ2

h̄2ωµ

{ i

ωµ
(e−iωµt − 1) − t}) . (A11)

According to (18), and with the help of the Green function (A10) we can
write the linear part of the generating function A as

A
(1)
jαβ(t) = −

∫ t

−∞

∫

α′β′

∑

j′

GA
j′

j
α′

α
β′

β (t − t′)µj′ Ej′ (t
′)F 0

α′β′ dt′ (A12)

The α′, β′ integrations in (A12) run over the whole set {α′
λ, β′

λ} each from
−∞ to ∞. They are trivial due to the δ-functions in the Green function.
The linear response is therefore given by

〈Bj〉(1)(t) = A
(1)
jα=β=0(t) =

−
∫ t

−∞

∑

j′

G0
A

j′

j (t − t′) f0(t − t′)µj′ Ej′(t
′) dt′, (A13)

f0(t) = f(t) exp(
∑

µ

−nµ|
γµ

h̄ωµ
(eiωµt − 1)|2) . (A14)
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Thus the time-evolution of the phonon-free system is altered only by a time-
dependent factor f0(t). This factor has previously been derived in 44. f0

contains the temperature-independent function f(t) as a factor. f accounts
for the possibility of phonon emision at zero temperature. The function f0

can, depending on the distribution of phonons, result in a memory kernel
providing an effective mechanism for pure dephasing as well as exhibiting
phonon sidebands. Expanding f0 with respect to the phonon coupling γµ

leads to

f0(t) = 1 −
∑

µ

nµ|
γµ

h̄ωµ
(eiωµt − 1)|2 −

∑

µ

γµ2

h̄2ω2
µ

(1 − e−iωµt) +
∑

µ

i
γµ2

h̄ω2
µ

t.

(A15)
Exactly the same result is obtained when equation (29) is solved perturba-
tively up to O(γµ2) for the case of the coupling scheme (A1), thus illustrat-
ing the fact that the decoupling scheme for the hierarchy of phonon-assisted
variables presented in section IV leads to equations that are correct up to
O(γµ2) in the phonon coupling.

From (A13) together with (11) we find for the linear polarization

~P (lin)(ω) =
∑

j

2ℜe(~χj(ω)Ej(ω)) , (A16)

where the linear susceptability χ is given by

~χj(ω) =
∑

n

−~µnµj

∫ ∞

−∞

eiωtG0
A

j
n(t) f0(t) dt. (A17)

Using ansätze in analogy to (A5) we can also construct the Green func-
tions for the equations (19)-(22) of the other generating functions.

GB
i′

i
j′

j
α′

α
β′

β (t) = G0
B

i′

i
j′

j (t) f(t)4
∏

µ

δ(αµeiωµt − α′
µ − 2γµ

h̄ωµ
[eiωµt − 1]) ×

×
∏

µ

δ(βµe−iωµt − β′
µ +

2γµ

h̄ωµ
[e−iωµt − 1]) , (A18)

GC
i′

i
j′

j
α′

α
β′

β (t) = G0
C

i′

i
j′

j (t) exp(
∑

µ

γµ

h̄ωµ
{αµ(eiωµt− 1) + βµ(e−iωµt− 1)}) ×

×
∏

µ

δ(αµeiωµt − α′
µ)
∏

µ

δ(βµe−iωµt − β′
µ) , (A19)

GD
k′

k
i′

i
j′

j
α′

α
β′

β (t) = G0
D

k′

k
i′

i
j′

j (t) fD(t) ×

× exp(
∑

µ

γµ

h̄ωµ
{αµ(eiωµt − 1) + 2βµ(e−iωµt − 1)}) ×

×
∏

µ

δ(αµeiωµt − α′
µ − γµ

h̄ωµ
[eiωµt − 1]) ×

×
∏

µ

δ(βµe−iωµt − β′
µ +

γµ

h̄ωµ
[e−iωµt − 1]) , (A20)

fD(t) = exp(−i
∑

µ

γµ2

h̄2ωµ

{ 1

iωµ
(eiωµt − 1) − 2

iωµ
(e−iωµt − 1) − 3t}) (A21)

GF
α′

α
β′

β (t) =
θ(t)

ih̄

∏

µ

δ(αµeiωµt − α′
µ)
∏

µ

δ(βµe−iωµt − β′
µ) . (A22)
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Thus, equations (A18)-(A22) and (A10) explicitly express the Green func-
tions of the equations of motion for the generating functions A−F in terms
of the known Green functions for the corresponding phonon-free problems.
In principle, these Green functions can be used to invert the equations for
the generating functions and thus would provide explicit but rather lengthy
Green function expressions for the generating functions, from which the op-
tical response can then be derived setting α = β = 0.

Finally we will discuss one further example, namely the second order re-

sult for the excitonic population variable 〈B†
i Bj〉. Using the Green function

(A19) and equation (20) we find

〈B†
i Bj〉(2)(t) = C

(2)
ijα=β=0(t) =

∑

i′j′

∫ ∞

−∞

G0
C

i′

i
j′

j (t − t′) ×

×{µi′Ei′(t
′)〈Bj′ 〉(t′) − µj′Ej′ (t

′)〈Bi′ 〉∗(t′)} dt′

=
∑

i′j′

∫ ∞

−∞

∫ ∞

−∞

G0
A

i′

i (t − t′)∗ G0
A

j′

j (t − t′′)µi′Ei′(t
′)µj′Ej′ (t

′′) ×

×{θ(t′ − t′′) f0(t′ − t′′) + θ(t′′ − t′) f0∗(t′′ − t′)} dt′dt′′. (A23)

It is interesting to note that according to (A23) the propagation in config-
uration space of the excitonic populations and coherences represented by

〈B†
i Bj〉 is totally unaffected by the interaction with the phonons once the

generation process is completed (i.e. once the driving field E has vanished).
Phonons affect this variable only via the modification of the sources 〈B〉.
This means that no matter on which timescale the excitonic transition
density 〈B〉 decays due to the pure dephasing provided by the phonons,

the variable 〈B†
i Bj〉 remains long-lived. The decay of 〈B†

i Bj〉 is governed
by the homogeneous lifetime broadening (not included in our present de-
scription). The fact that the influence of the phonons on the configuration

space propagation of 〈B†
i Bj〉 is completele missing, is of course a conse-

quence of our oversimplified coupling scheme. However, it illustrates as
an extreme example the expectation that population-like variables are less
affected by pure dephasing processes than transition-like quantities. Fur-
thermore, we see from the explicit representations (A13) and (A23) that

in general 〈B†
i Bj〉 6= 〈B†

i 〉〈Bj〉. We therefore have to conlude that the
gradual loss of coherence due to the coupling to phonons manifests itself

in the deviation from the factorization properties of variables like 〈B†
i Bj〉

even in our simple model, where there is only exchange of energy (without
exchange of momentum).

Appendix B: Derivation of transfer rates

In this appendix we compute the rates for the incoherent transfer of exci-
tations between different sites as predicted by our model. These quantities
are needed in equations (67) and (69) describing the combined influence of
coherent and incoherent exciton dynamics. To this end, we assume that
the system is at an initial time t0 represented by the density matrix for a
state where site j is excited and the phonons are in thermal equilibrium

ρ0 = B†
j |0〉〈0|Bj exp{ −1

KT

∑

lλ

(h̄ωλl
b†λl

bλl
+ γλl

l B†
l Bl(b

†
λl

+ bλl
))}/Z̄,

(B1)

Z̄ = Tr[B†
j |0〉〈0|Bj exp{ −1

KT

∑

lλ

(h̄ωλl
b†λl

bλl
+ γλl

l B†
l Bl(b

†
λl

+ bλl
))}].

(B2)
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From ρ0 we find that the function C̄jjαβ initially has the value

C̄jjαβ = exp(
∑

lλl

αλl
βλl

nλl
) exp(−

∑

λj

γλj

h̄ωλj

{αλj
+ βλj

}) . (B3)

The propagation of this excitation has to be determined from the homo-
geneous part of the equation of motion for C̄ (62). This can be done
perturbatively with respect to the dipole coupling Jij . The zeroth order
problem in J is solved by the Green function

G0
C̄

i′

i
j′

j
α′

α
β′

β (t) =
θ(t)

ih̄
δii′δjj′e

i(Ω̄i−Ω̄j)t ×

× exp(
∑

λj

βλj

γ
λj

j

h̄ωλj

(e−iωλj
t − 1) +

∑

λi

αλi

γλi

i

h̄ωλi

(eiωλi
t − 1)) ×

×
∏

lλl

δ(αλl
eiωλl

t − α′
λl

+ ξij
γλl

l

h̄ωλl

(eiωλl
t − 1)[δli − δlj ]) ×

×
∏

lλl

δ(βλl
e−iωλl

t − β′
λl

+ ξij
γλl

l

h̄ωλl

(e−iωλl
t − 1)[δlj − δli]) ×

exp(ξij{
∑

λi

fλi

i (eiωλi
t − 1)) +

∑

λj

f
λj

j (e−iωλj
t − 1)}) , (B4)

with

f
λj

j =
γ

λj

j

2

h̄2ωλj
2

; Ω̄j = Ωj + ωj ; ωj = −
∑

λj

f
λj

j ωλj
. (B5)

G0
C̄

has been constructed using the same methods described in appendix

A. With the help of G0
C̄

it is easy to solve for the lowest order terms in
the perturbation series with respect to J iterating (62). When the result
is evaluated at i = j and α = β = 0 one finds, neglecting memory effects,
that the propagation of the excitation population Nj is given to second
order in the dipole coupling by the homogeneous part of (69), where the
rates Rjn are given by

Rjn = 2ℜe(R̄jn) , (B6)

R̄jn =
JjnJnj

h̄

∫ ∞

0

ei(Ω̄j−Ω̄n)τe
−
∑

λj
f

λj

j
[nλj

(1−e
−iωλj

τ
)+(nλj

+1)(1−e
iωλj

τ
)] ×

×e
−
∑

λn
fλn

n [nλn (1−e−iωλn
τ )+(nλn+1)(1−eiωλn

τ )]
dτ. (B7)

Expanding the exponentials in (B7), it is straightforward to show explicitly

that the detailed balance condition Rmj = Rjm e−(Ω̄m−Ω̄j) h̄
KT is satisfied.

R̄jn is also the transfer rate needed in equation (67).
Unlike the population Nj , the correlation Zij originates from off diagonal

elements of the density matrix. In order to determine how an excitation,
that initially gives a non zero value only to the the matrixelement Zij ,
propagates in time, we consider an initial state given by the density matrix

ρ̃0 = (ajB
†
j |0〉 + ãijB

†
i B

†
j |0〉)(〈0|Bja

∗
j + 〈0|BiBj ã

∗
ij) ×

× exp{− 1

KT

∑

lλ

(h̄ωλl
b†λl

bλl
+ γλl

l B†
l Bl(b

†
λl

+ bλl
))}/Z̃ , (B8)

where aj and ãij are arbitrary constants characterizing the initial state

and Z̃ is a normalization factor. Starting from this initial condition, we
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can proceed in the same way as we did in the case of Nj ; i.e. first, one sets
up an equation of motion for the function D̄kijαβ = Dkijαβ − A∗

kβα Bijαβ

and determines the initial value of D̄iijαβ . Then one constructes the Green
funktion for the propagation of D̄ to zeroth order in the dipole coupling.
Finally, one iterates the homogeneous part of the equation for D̄ up to sec-
ond order in J . The above steps result in the following equation describing
the generation and propagation of the function Zij defined in section V.

ih̄∂tZij = ξij{
∑

n

J̄jnZin + 2h̄ωjZij − JjiZjj − iJijJji[κ
2
jσijZij − σ̄ijZjj ]

−i
∑

n

(JinJji[Sijn(Ω̄n)Zin − S̄ijn(Ω̄n)Zjn]

+JinJni[Sinj(Ω̄j)Zij − S̄inj(Ω̄j)Znj ])}
+δij{[(κ2

j − 1)2κ2
j h̄ωj + ∆j + h̄Ωj ]Zjj

+i
∑

n

JjnJni[κ
2
jσnjZnj − σ̄niZjj ] + κ2

j

∑

n

JinZin}

+i
∑

n

{JniJjn[Snji(Ω̄i)Zni − S̄nji(Ω̄i)Zji]

+JniJin[Snij(Ω̄j)Znj − S̄nij(Ω̄j)Zij ]} + QZij
, (B9)

where the source QZij
is given by

QZij
= −ξijµjEjNi − δijκ

2
jµjEjNj

+ξij〈BiBj〉
∫ t

−∞

h̄
(

Ω̄B(t − t′)j
i 〈Bj〉(t′) + Ω̄B(t − t′)i

i〈Bi〉(t′)
)∗

dt′

−〈Bi〉(t)∗
∑

i′j′

∫ t

−∞

h̄Ω̄BB(t − t′)i′

i
j′

j 〈Bi′Bj′〉(t′) dt′

−δijκ
2
j〈BjBj〉(t)

∫ t

−∞

(

h̄Ω̄B(t − t′)j
i 〈Bj〉(t′)

)∗

dt′ , (B10)

with

h̄Ω̄B(t)j
i = Γj(t)G

0
A

j
i (t) ,

h̄Ω̄BB(t)i′

i
j′

j = G0
B

i′

i
j′

j (t)Γi(t){ξi′j′(δij′ + δii′) + δi′j′κ
2
j′δij′} .

The transfer rates in (B9) are

Sijn(t) = S0
ijn(t) exp(−

∑

λi

fλi

i (eiωλi
t − e−iωλi

t)) , (B11)

S̄ijn(t) = S0
ijn(t) exp(

∑

λj

f
λj

j (eiωλj
t − e−iωλj

t)) , (B12)

S0
ijn(t) = ξijξnjξin

1

h̄
e−i(Ω̄n+Ω̄j−Ω̄i)t ×

× exp(
∑

λj

f
λj

j {(e−iωλj
t − 1) − nλj

|eiωλj
t − 1|2}) ×

× exp(
∑

λi

fλi

i {(eiωλi
t − 1) − nλi

|eiωλi
t − 1|2}) ×

× exp(
∑

λn

fλn
n {(eiωλnt − 1) − nλn

|eiωλnt − 1|2}) , (B13)
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σij =

∫ ∞

0

ξij

h̄
e−(

∆j

h̄
+2Ωj+ωjκ2

j−Ω̄i−Ω̄j)t ×

× exp(
∑

λj

κ4
jf

λj

j (e−iωλj
t − 1)) exp(

∑

λi

fλi

i (e−iωλi
t − 1)) ×

× exp(
∑

λj

κ2
jf

λj

j (eiωλj
t − e−iωλj

t)) exp(−
∑

λi

fλi

i nλi
|eiωλi

t − 1|2) ×

× exp(−
∑

λj

κ4
jf

λj

j nλj
|eiωλj

t − 1|2) dt , (B14)

σ̄ij =

∫ ∞

0

ξij

h̄
e−(Ω̄j−Ω̄i)t ×

× exp(
∑

λj

κ4
jf

λj

j (e−iωλj
t − 1)) exp(

∑

λi

fλi

i (eiωλi
t − 1)) ×

× exp(−
∑

λi

fλi

i nλi
|eiωλi

t − 1|2) exp(−
∑

λj

κ4
jf

λj

j nλj
|eiωλj

t − 1|2) ×

× exp(
∑

λj

(κ2
j − 1)f

λj

j (eiωλj
t − e−iωλj

t)) dt . (B15)

and Sijn(Ω) and S̄ijn(Ω) are the Fourier transforms of Sijn(t) and S̄ijn(t).

Appendix C: Time-local version of the combined coherent and

incoherent exciton dynamics

Starting from equations (67)-(69) time-local equations of motion can be
obtained following the procedures of subsection IVC. These equations read

ih̄∂t〈Bj〉(a) =
∑

n

J̄jn〈Bn〉(a) − µjĒ
(a) e−iωat

+ih̄ℑm(ΩB)(ωa)j〈Bj〉(a) , (C1)

ih̄∂t〈BiBj〉(a,b) = ξij{
∑

n

(J̄jn〈BiBn〉(a,b) + J̄in〈BnBj〉(a,b))

−Ē(a) e−iωat [µi〈Bj〉(b) + µj〈Bi〉(b)] − Ē(b) e−iωbt [µi〈Bj〉(a) + µj〈Bi〉(a)]}
+δij{κ2

j(
∑

n

Jjn〈BjBn〉(a,b) − µj [Ē
(a)e−iωat〈Bj〉(b) + Ē(b)e−iωbt〈Bj〉(a)])

+(∆j + 2h̄Ωj)〈BjBj〉(a,b)}
+
∑

i′j′

ih̄ℑm(ΩBB)(ωa + ωb)
i′

i
j′

j 〈Bi′Bj′〉(a,b) , (C2)

h̄∂tN
(−a,b)
j =

∑

m

(RjmN (−a,b)
m − RmjN

(−a,b)
j )

−〈Bj〉(a)∗〈Bj〉(b)h̄{ℑm(Ω)(ωa)j + ℑm(Ω)(ωb)j} , (C3)

ih̄∂t〈Bj〉(−a,b,c) = µj qjĒ
(b) e−iωbt{〈Bj〉(a)∗〈Bj〉(c) + N

(−a,c)
j }

+µj qjĒ
(c) e−iωct{〈Bj〉(a)∗〈Bj〉(b) + N

(−a,b)
j }

+∆j {〈Bj〉(a)∗〈BjBj〉(b,c) + 2 (N
(−a,b)
j 〈Bj〉(c) + N

(−a,c)
j 〈Bj〉(b))}

−qj

∑

n

Jjn{〈Bj〉(a)∗〈BjBn〉(b,c) + N
(−a,b)
j 〈Bn〉(c) + N

(−a,c)
j 〈Bn〉(b)}
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−iqj

∑

n

{(R̄jnN (−a,b)
n − R̄∗

njN
(−a,b)
j )〈Bj〉(c)

+(R̄jnN (−a,c)
n − R̄∗

njN
(−a,c)
j )〈Bj〉(b)} +

∑

n

J̄jn〈Bn〉(−a,b,c)

+ih̄ℑm(ΩB)(ωc + ωb − ωa)j〈Bj〉(−a,b,c) , (C4)

where again the RWA has been invoked. The self-energies h̄ΩB and h̄ΩBB

are the Fourier transforms of (44) and (45).
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