


COHERENT CONTROL OF HEAVY-LIGHT HOLE ANDPHONON QUANTUM BEATST. KUHN, V.M. AXT AND M. HERBSTInstitut f�ur Theoretische Physik IIWestf�alische Wilhelms-Universit�atWilhelm-Klemm-Str. 10, 48149 M�unster, GermanyANDE. BINDERHitachi Cambridge LaboratoryCavendish LaboratoryMadingley Road, Cambridge CB3 0HE, UKAbstract. The control of quantum beats by two phase-locked optical pulsesis analyzed theoretically. We compare the case of heavy-light hole quan-tum beats as an example of a purely electronic coherence with the caseof phonon quantum beats which are a characteristic feature of electron-phonon quantum kinetics. The maxima and minima of the beat amplitudescan be understood by the same arguments. For the case of phonon quantumbeats an exacly solvable model is presented which allows us to analyze therole of the electron-phonon coupling constant.1. IntroductionCoherent dynamics in semiconductors relies on the fact that a quantum me-chanical system is not completely speci�ed by the amplitude of the wavefunction related to an occupation probability, but also by its phase. Inatomic physics such coherent experiments have a long tradition, in semi-conductors, due to the short dephasing times, they have been possible onlywhen su�ciently short laser pulses became available. Among the manytypes of coherent experiments one of the most direct ways to show thewave-like behavior are coherent control experiments which are based onthe phenomenon of constructive or destructive interference. Essentially two



2 T. KUHN ET AL.di�erent classes of such experiments have been performed: The excitationby two simultaneous pulses with di�erent frequencies allows one to controlthe �nal state of the system which is used, e.g., for the coherent control ofphotocurrent [1] or chemical reactions [2]. The excitation by two tempo-rally non-overlapping pulses, on the other hand, gives a direct informationon the phase memory introduced by the �rst pulse. Examples of this lat-ter case are coherent control of exciton density, spin, and heavy-light hole(HL) beats [3, 4, 5], of THz emission due to quantum beats in asymmetricdouble quantum wells [6, 7], and of phonon quantum beats [8, 9]. In thiscontribution we will concentrate on the coherent control of quantum beatsby comparing the case of HL beats which can be understood on the basisof the semiconductor Bloch equations (SBE) with the case of phonon quan-tum beats, which require a quantum kinetic treatment of carrier-phononinteraction. Besides a full quantum kinetic semiconductor model we inves-tigate an analytically solvable model which allows us to study the e�ectsof a stronger electron-phonon coupling.2. Heavy-light hole quantum beatsThe theoretical description of coherent dynamics in a semiconductor in-cluding heavy holes (HH) and light holes (LH) is based on the multibandSBE. The basic variables are the elements of the single particle density ma-trix f ek = hcykcki, fhij;k = hdyi;kdj;ki, and pi;k = hdi;�kcki, where cyk and dyi;k(ck and di;k) denote the creation (annihilation) of electrons and holes withi; j = h; l refering to HH and LH, respectively. The equations of motion forthese variables are given byddtf ek = 1i�hXi (Ui;kp�i;k � U�i;kpi;k) + ddtf ek���col ; (1)ddtfhij;�k = 1i�hXl (Ehjl;�kfhil;�k � Ehli;�kfhlj;�k)+ 1i�h(Uj;kp�i;k � U�i;kpj;k) + ddtfhij;�k���col ; (2)ddtpi;k = 1i�hXj (Eek�ij + Ehij;�k)pj;k+ 1i�hXj Uj;k(�ij � �ijf ek � fhji;�k) + ddtpi;k���col : (3)Here, the Hartree-Fock renormalized energiesEek = �ek �Xq Vqf ek+q ; (4)



COHERENT CONTROL OF QUANTUM BEATS 3Ehij;k = �hi;k�ij �Xq Vqfhji;k+q ; (5)�ek and �hi;k denoting the single particle energies of electrons and holes andVq being the Coulomb matrix element, include the e�ect of band gap renor-malization, and the Hartree-Fock renormalized �eldUi;k = �Mi;kE0(t)e�i!Lt �Xq Vqpi;k+q ; (6)Mi;k being the dipole matrix element and E0(t) (!L) denoting the ampli-tude (central frequency) of the driving �eld, give rise to excitonic e�ects andCoulomb enhancement. In these equations only Coulomb terms conservingthe number of carriers in each band have been taken into account whichare the dominant terms due to their small-q behavior. Thus, contributionsbetween conduction and valence bands leading, e.g., to Auger recombina-tion and impact ionization as well as contributions leading to transitionsbetween the valence bands are neglected. The resulting SBE are equivalentto the multisubband case given in [10].The last term on the right hand side in each of the Eqs. (1)-(3) denotesthe collision term. In the present section dephasing is treated in termsof simple relaxation time T2 while relaxation processes of the distributionfunction are neglected. A detailed quantum kinetic treatment of the collsionterms due to carrier-phonon interaction will be discussed in the followingsections.For the case of excitation mainly in the excitonic region of the spectrumthe SBE give more insight into the coherent dynamics after transformationinto the exciton basis.[10, 11] The frequency !n and wave function pni;k ofthe exciton state jni in k-space representation are obtained by inserting theansatz pi;k(t) = pni;ke�i!nt (7)into the homogeneous part of Eq. (3), i.e., from the eigenvalue problem��ek + �hi;�k � �h!n� pni;k �Xq Vqpni;k+q = 0 : (8)Then, the polarization can be expanded in the complete and orthogonalbasis set of exciton states according topi;k(t) =Xn Pn(t)pni;k (9)where Pn denotes the amplitude of the n-th exciton state. After some cal-culations the SBE in the exciton basis are obtained:ddtf ek = � 1i�hXi;n �pn�i;kMi;kE0(t)e�i!LtP �n � pni;kM�i;kE�0(t)ei!LtPn�



4 T. KUHN ET AL.� 1i�hXnn0 Xi;k0 Vk�k0 �pn�i;kpn0i;k0 � pn�i;k0pn0i;k�P �nPn0 ; (10)ddtfhij;�k = 1i�hXl (Ehjl;�kfhil;�k � Ehli;�kfhlj;�k)� 1i�hXn �pn�i;kMj;kE0(t)e�i!LtP �n � pnj;kM�i;kE�0(t)ei!LtPn�� 1i�hXnn0 Xk0 Vk�k0 �pn�i;kpn0j;k0 � pn�i;k0pn0j;k�P �nPn0 ; (11)ddtPn = �i!nPn � 1i�h�nE0(t)e�i!Lt � PnT2+ 1i�hXij;k pn�i;kMj;kE0(t)e�i!Lt ��ijf ek + fhji;�k�+ 1i�hXn0 Pn0� Xijkk0 Vk�k0 ��ijf ek + fhji;�k��pn0�i;k pn0j;k0 � pn�i;k0pn0j;k0� : (12)The coupling to the light �eld is now determined by the exciton dipolemoment �n =Xi;k pn�i;kMi;k: (13)The various terms in the equations of motion can be classi�ed accordingto the order of the light �eld: The dominant contribution to the excitonamplitude Pn (�rst line in Eq. (12)) is of �rst order in the �eld. Thus, alldriving terms in Eqs. (10),(11) are of second order in the �eld. The Coulombterms cannot be neglected in the calculation of the carrier distribution evenat low densities. However, these terms cancel in the equation of motion forthe complete carrier (or exciton) densityN = ne = nh =Xk f ek =Xi;k fhii;k (14)which, since Vk�k0 = Vk0�k, is given byddtN = � 1i�hXn ��nE0(t)e�i!LtP �n � ��nE�0(t)ei!LtPn� : (15)The second and third line in Eq. (12), which originate from phase space�lling, band gap and renormalization, involve products of �eld or excitonamplitudes and distribution functions. Therefore they are at least of thirdorder in the �eld. If screening is taken into account additional contributionsappear due to the density-dependence of the Coulomb matrix elements



COHERENT CONTROL OF QUANTUM BEATS 5which, again, are at least of third order in the �eld. Thus, in the low densitylimit, i.e., up to second order in the �eld, the SBE in the exciton basis(Eqs. (12),(15)) agree with the optical Bloch equations for an ensemble oftwo-level systems with frequencies !n, N denoting the total occupation ofthe upper states. In this representation the linear response as well as theexciton density in second order are exactly determined by optical Blochequations which enables one to interpret the results in terms of rotations ofa Bloch vector [3, 5]. If higher order terms are included, this analogy doesnot hold anymore since the full k-dependence of the distribution functionsis required for the third-order contributions.In a coherent control experiment, HL beats can be observed in the exci-ton density as a function of the pulse delay [4] and in the four wave mixing(FWM) signal [3]. They also modulate pump-probe signals like the di�er-ential transmission and re
ection. In a coherent control FWM experimenttwo pulses in the direction k1 generate a polarization in the sample. Athird pulse in the direction k2 interacts with this polarization and is self-di�racted in the direction 2k2 � k1 where the FWM signal is measured.In a �rst approximation the FWM signal is a measure for the polarizationinduced by the �rst two pulses and, since the inhomogeneous broaden-ing is eliminated by a time-reversal, the incoherently summed polarizationPj;k jpj;kj is a good measure for the signal in the sense that it containsthe essential features. A full calculation of FWM signals is also possible,in the present case, however, calculations including three pulses for a largenumber of time delays are required which would be very time consuming.Figure 1 shows the incoherently summed polarization for two series oftime delays between the pulses one and two (150 fs pulses centered at theHH exciton), n refering to the number of HH exciton periods Thh = 2�=!hhand nl refering to the respective number of LH periods. For an integer valueof n the polarization is enhanced by the second pulse (constructive inter-ference), for an integer plus one half value it is reduced (destructive inter-ference). Due to the dephasing (T2 = 2.5 ps) it is not completely destroyed.The quantum beats, on the other hand, are determined by nl because thelight holes are excited much weaker. The beats vanish completely if nl as-sumes an integer plus one half value since in this case the LH componentis essentially destroyed by the second pulse.3. Carrier-phonon quantum kinetics: Phonon quantum beatsOn the semiclassical kinetic level interaction mechanisms lead to transi-tions between states, the transtition rates being obtained from Fermi'sgolden rule. On this level, these mechanisms are a source of dephasingof coherent variables like interband, intersubband, and intervalence band



6 T. KUHN ET AL.
0 1 2 3 4

Time (ps)

P
ol

ar
iz

at
io

n 
(a

rb
. u

ni
ts

)

n = 165.0
(nl=165.7)

n = 165.5
(nl=166.2)

n = 166.0
(nl=166.7)

(a)

0 1 2 3 4
Time (ps)

n = 330.0
(nl=331.5)

n = 332.0
(nl=332.5)

n = 331.0
(nl=332.5)

(b)

Figure 1. Coherent control of HL quantum beats in a single quantum well. The timedelay between the pulses is given in units of the HH period (n) and the LH period (nl).polarizations. On a quantum mechanical level, on the other hand, theycan also be a source of coherence due to the coupling between states. Inthe case of carrier-LO-phonon interaction it has been shown theoretically[12, 13, 14, 15] and experimentally [16] that in a quantum kinetic treat-ment the decay of the polarization exhibits an oscillatory contribution, thephonon quantum beats. Only recently it has been shown experimentallythat also these beats can be coherently controlled [8, 9].Carrier-phonon quantum kinetics in a two-band model can be describedon various levels, in particular nonequilibrium Green's functions [12, 13] orthe density matrix formalism [14, 15], both leading to the same equations ofmotion on certain approximation levels. The carrier-phonon Hamiltonianintroduces new variables in the eqations of motion of the single particledensity matrices f e;hk , pk and nq = hbyqbqi, these are the phonon assisteddensity matricesSek+q;k = i�hgqhcyk+qbqcki ; Shk+q;k = � i�hgqhdyk+qbqdki ; (16)T (+)k+q;k = i�hgqhd�(k+q)bqcki ; T (�)k;k+q = i�hgqhd�kbyqck+qi ; (17)



COHERENT CONTROL OF QUANTUM BEATS 7gq being the coupling matrix elements and byq (bq) denoting phonon creation(annihilation) operators. They constitute the starting point of an in�nitehierarchy of equations of motion involving higher order density matrices. Interms of a correlation expansion, this hierarchy is truncated by factorizationon a certain level. A discussion of this factorization can be found in [17].The Hamiltonian for a two-band model including carrier-carrier andcarrier-phonon interaction is given byH =Xk ��ekcykck + �hkdykdk�+Xq �h!op byqbq� Xk �MkE0(t)e�i!Lt cykdy�k +M�kE�0(t)ei!Lt d�kck�+ Xk;q gq �cyk+qbqck � cykbyqck+q � dyk+qbqdk + dykbyqdk+q�+ Xk;k0q Vq2 �cykcyk0ck0+qck�q + dykdyk0dk0+qdk�q � 2cykdyk0dk0+qck�q� :(18)If all four-point correlations are neglected, this Hamiltonian gives rise tothe equations of motion for the single particle density matricesddtf ek = 2Re� i�hU�kpk�+ Xq h2RenSek+q;ko� 2RenSek;k�qoi ; (19)ddtfh�k = 2Re� i�hU�kpk�+ Xq h2RenSh�(k+q);�ko� 2RenSh�k;�(k�q)oi ; (20)ddtpk = � i�h �Eek + Eh�k� pk � i�hUk �1� f ek � fh�k�+ Xq hT (+)k+q;k � T (�)k�q;k � T (+)k;k�q + T (�)k;k+qi ; (21)ddtnq = Xk h2RenSek+q;ko+ 2RenShk+q;koi : (22)For the phonon assisted density matrix T (+) we obtainddtT (+)k0;k = 1i�h �Eh�k0 + Eek + �h!op�T (+)k0;k � i�h �1� fh�k0 � f ek� ~T (+)k0;k+ i�h�Uk0Sek0;k � UkSh�k;�k0�� i�h�pk0 ~Sek0;k � pk ~Sh�k;�k0�
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46.87 fs

45.45 fs

44.11 fsFigure 2. Coherent control of phonon quantum beats in a quantum wire for the case ofexcitation by two 15 fs pulses centered at the exciton frequency.+ 1�h2 jgk0�kj2 h�nk0�k + 1��1� f ek�+ nk0�kf eki pk0� 1�h2 jgk0�kj2 h�nk0�k + 1��1� fh�k0�+ nk0�kfh�k0i pk (23)with the o�-diagonal Hartree-Fock terms~Se;hk0 ;k = �Xq0 Vq0Se;hk0+q0 ;k+q0 + Vk0�kXq0  Se;hk0+q0;k+q0 + Sh;ek0+q0 ;k+q0!;(24)~T (�)k0 ;k = �Xq0 Vq0T (�)k0+q0 ;k+q0 ; (25)and similar equations for the other phonon assisted density matrices.Figure 2 shows the incoherently summed polarization for the case of aquantum wire excited by two 15 fs pulses centered at the exciton frequency.



COHERENT CONTROL OF QUANTUM BEATS 9The oscillations, which in the present case are due to a beating between theexciton and a phonon sideband above the exciton, can be clearly controlledby the relative phase of the second pulse. The beats are essentially absentfor the lowest and the highest value of the time delay shown in the �gure.These values correspond to 16.5 and 17.5 times the period of the phononsideband which is determined by the sum of exciton and beat frequency.Thus, the behavior is the same as in the case of HL beats shown above.It is interesting to notice that the decay of the signal is modi�ed by thesecond pulse, a feature which has been found also in the experiment [8, 9].4. Non-perturbative treatment of carrier-phonon interactionThe quantum kinetic theory discussed in the previous section is based ona correlation expansion which assumes that correlations between an in-creasing number of quasiparticles are of decreasing importance. Since thisexpansion is related to an expansion in the carrier-phonon coupling matrixelement, the analysis of systems with a stronger phonon coupling requires totake into account higher orders in the hierarchy. In this section we discussan alternative method which has been proposed recently [18] and whichavoids the hierarchy. This method will be applied to a simple model of atwo-level system interacting with a single phonon mode. This model, whichhas already been shown to explain very well the coherent control of phononquantum beats in the weak coupling limit [8, 9], can be solved exactly bythe present method.The basic idea is to substitute the single particle density matrices bygenerating functions de�ned according to, e.g.,f ekk0(f�qg; f�qg) = hcykck0 exp[Xq �qbyq] exp[Xq �qbq]i ; (26)pkk0(f�qg; f�qg) = hdkck0 exp[Xq �qbyq] exp[Xq �qbq]i (27)with complex numbers �q and �q. All phonon-related higher order densitymatrices can be obtained as partial derivatives with respect to �q and �qtaken at �q = �q = 0. As a result, the hierarchy of equations of motion istransformed into a set of partial di�erential equations. While the treatmentof a full semiconductor model is too complicated due to the high dimensionof the equations, the following two-level model interacting with one phononmode, which stands for a coupled exciton-phonon system, can be solvedanalytically.The Hamiltonian including the coupling to the light �eld is given byH = �h
cyc+ �h!Lbyb+ �hg (by+ b) cyc� �hM0 (E cydy +E�dc) : (28)



10 T. KUHN ET AL.The dynamical variables in this case are the functionsp(�; �; t) = hdc exp(�by) exp(�b)i ; (29)f(�; �; t) = hcyc exp(�by) exp(�b)i ; (30)n(�; �; t) = hexp(�by) exp(�b)i ; (31)which obey the following equations of motion:i@tp = [
 + !L(�@� � �@�) + g(� + @� + @�)]p�M0E(n� 2f);(32)i@tf = [!L(�@� � �@�) + g(� � �)]f �M0[EpT �E�p]; (33)i@tn = !L(�@� � �@�)n+ g(� � �)f; (34)with pT (�; �) � p�(��; ��). By means of the transformations�p(�; �; t) = ei�
t+�
ei!Lt p(�e�i!Lt+
; � ei!Lt�
; t) ; (35)�f(�; �; t) = e
(�ei!Lt+�e�i!Lt) f(� e�i!Lt; � ei!Lt; t) ; (36)�n(�; �; t) = n(� e�i!Lt; � ei!Lt; t) ; (37)�E(t) = M0 exp[i�
t]E(t); (38)with �
 = 
 � !L 
2, and 
 = g=!L the partial derivatives are eliminatedresulting in a set of three ordinary di�erential equations which can be fur-ther simpli�ed by setting �y(�; t) = �y(���; �; t) where y stands for p, f , andn. The �nal equations of motion are@t�p(�) = i �E [ e�
 ei!Lt �n(��
e�i!Lt)� 2 e��
 e�i!Lt �f(��
e�i!Lt) ]; (39)@t �f(�) = ie�
2 [ �E e�
 ei!Lt �p�(��+
e�i!Lt)� �E� e���
 e�i!Lt �p(�+
e�i!Lt) ]; (40)@t�n(�) = �i
 !L 2Re[�ei!L t] e�
 2iImm[�ei!Lt] �f(�): (41)These equations have to be solved with the initial conditions �f(�; 0) =�p(�; 0) = 0 and �n(�; 0) = exp[�nLj�j2], nL being the equilibrium (Bose)value of the phonon occupation. From the dynamical variables we obtainthe polarization P = �hM0e�(i�
t+
2)�p(
 e�i!Lt; t) and the exciton densityNe = �f(� = 0; t).The equations can be solved iteratively for the case of excitation by�-pulses E(t) = E0 �(t). The linear polarization is given byP (1)� (t) = i�hM20E0 �(t) e�i�
t+
2 (e�i!Lt�1�nL je�i!Lt�1j2) : (42)
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2 
2jj! e�i(�
+j!L)t (43)which shows the well-known result of phonon sidebands at multiples of thephonon frequency above the polaron shifted exciton energy. It is interestingto compare this exact result with the result obtained from the �rst ordercorrelation expansion:P (1)�corr(t) = i�hM20E0�(t)(1+2x) f(x+1)e�i[
�!Lx]t + xe�i[
+!L(1+x)]tg (44)with x = (p1 + 4
2 � 1)=2 � 
2. As expected, we �nd only one phononsideband, the frequency however being shifted by a factor (1 + 2x).The exciton density up to O(E2) generated by two �-pulses with a timedelay � is given byN (2)e;� (t; �) = jM0E0j2 f�(t) + �(t��)
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Figure 4. Coherent control of phonon quantum beats obtained from the two-level modelfor delta pulses at T = 10K.�[2Re[e�i�
�+
2 (e�i!L��1�nL je�i!L��1j2)] + 1]g (45)exhibiting the fast coherent control oscillations at the polaron shifted exci-ton energy �
 as well as additional structures related to the phonon coupling.In Fig. 3 the exciton density created by two 15 fs pulses at a temperatureof 10 K is shown as a function of � for three di�erent values of the phononcoupling. For x = 0:2 we �nd a weak modulation with the phonon fre-quency. With increasing coupling the higher order terms do not show up asadditional frequencies, instead the minima become more pronounced lead-ing �nally to a behavior similar to a \collapse and revival". In the lowestpart of the �gure we compare the full model with the �rst order correlationexpansion result which, of course, are quite di�erent at this high value ofx. Nevertheless it is interesting to notice that the very initial part below20 fs is still in agreement which is consistent with the interpretation thatthe correlations are successively built up.



COHERENT CONTROL OF QUANTUM BEATS 13For the case of excitation by three �-pulses the FWM signal can becalculated analytically. The polarization in the FWM direction is given byP (3)2k2�k1 = �i�hM20E0 jM0E0j2�(t)e�i�
t+2
2(cos(!Lt)�1)�f�(�t1)e�i�
t1+
2(2e�i!Lt1 �ei!L(t�t1)�1�nL j2�e�i!Lt1 �e�i!Ltj2)+�(�t10)e�i�
t10+
2(2e�i!Lt10�ei!L(t�t10)�1�nL j2�e�i!Lt10�e�i!Ltj2)g(46)where the time of the pulse in direction k2 has been set to zero. The FWMsignal P (3)2k2�k1 for di�erent time delays of the pulses in direction k1 andfor two values of the coupling constants are shown in Fig. 4. The resultsfor the weak coupling are in agreement with those given in [8] and clearlyshow the coherent control of the quantum beats. By an expansion of theexponential (for t = 0, nL = 0, t21 > 0, t210 > 0) the signal can be writtenas jP (3)2k2�k1 j2 = const f1 + cos(�
t110) + 
2 h(t210 ; t110)g (47)with h(t210; t110) = cos!Lt210fcos!Lt110 + 1+ cos(�
+ !L)t110 + cos �
t110g+ sin!Lt210 fsin!Lt110 + sin(�
 + !L)t110 � sin �
t110g which directly showsthat the beat amplitude h vanishes for (�
+!L)t110 = (2n+1)� or �
t110 =(2n+1)� in agreement with the results of the previous sections. In the caseof a stronger phonon coupling the FWM signal in Fig. 4(b) exhibits higherharmonics of the phonon frequency. Since now more than two transitionsare beating the oscillations cannot be anymore switched o� completely.5. ConclusionsWe have presented a theoretical analysis of the coherent control of heavy-light hole and phonon quantum beats. In all cases the quantum beats areswitched o� by the second pulse if there is destructive interference for theweaker of the two beating transitions, which in the �rst case was the lighthole and in the second case the phonon sideband. We have shown by ananalytical solution of a two-level model coupled to a single phonon modethat for stronger phonon coupling higher harmonics appear in the FWMsignal and a full control of the beats is not anymore possible.AcknowledgementsThis work has been supported by the Deutsche Forschungsgemeinschaftwithin the framework of the Schwerpunktprogramm Quantenkoh�arenz inHalbleitern and by the European Commission within the TMR networkUltrafast Quantum Optoelectronics. A grant for computer time at the HLRZJ�ulich is gratefully acknowledged.
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