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Abstract. The control of quantum beats by two phase-locked optical pulses
is analyzed theoretically. We compare the case of heavy-light hole quan-
tum beats as an example of a purely electronic coherence with the case
of phonon quantum beats which are a characteristic feature of electron-
phonon quantum kinetics. The maxima and minima of the beat amplitudes
can be understood by the same arguments. For the case of phonon quantum
beats an exacly solvable model is presented which allows us to analyze the
role of the electron-phonon coupling constant.

1. Introduction

Coherent dynamics in semiconductors relies on the fact that a quantum me-
chanical system is not completely specified by the amplitude of the wave
function related to an occupation probability, but also by its phase. In
atomic physics such coherent experiments have a long tradition, in semi-
conductors, due to the short dephasing times, they have been possible only
when sufficiently short laser pulses became available. Among the many
types of coherent experiments one of the most direct ways to show the
wave-like behavior are coherent control experiments which are based on
the phenomenon of constructive or destructive interference. Essentially two
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different classes of such experiments have been performed: The excitation
by two simultaneous pulses with different frequencies allows one to control
the final state of the system which is used, e.g., for the coherent control of
photocurrent [1] or chemical reactions [2]. The excitation by two tempo-
rally non-overlapping pulses, on the other hand, gives a direct information
on the phase memory introduced by the first pulse. Examples of this lat-
ter case are coherent control of exciton density, spin, and heavy-light hole
(HL) beats [3, 4, 5], of THz emission due to quantum beats in asymmetric
double quantum wells [6, 7], and of phonon quantum beats [8, 9]. Tn this
contribution we will concentrate on the coherent control of quantum beats
by comparing the case of HI. beats which can be understood on the basis
of the semiconductor Bloch equations (SBE) with the case of phonon quan-
tum beats, which require a quantum kinetic treatment of carrier-phonon
interaction. Besides a full quantum kinetic semiconductor model we inves-
tigate an analytically solvable model which allows us to study the effects
of a stronger electron-phonon coupling.

2. Heavy-light hole quantum beats

The theoretical description of coherent dynamics in a semiconductor in-
cluding heavy holes (HH) and light holes (I.H) is based on the multiband
SBE. The basic variableq are the elements of the single particle density ma-
trix fi = <(31T{(:k> 77k <d d;y)y and py = (d; ), where (:IT{ and d:{k
(¢ and d, ) denote the creahon (annihilation) of electrons and holes with
1, = h,l #efering to HH and T.H, respectively. The equations of motion for
these variables are given by

d . d . col
%.fk = —Z (U; kl% k?% k) + Efk ) (1
d 1
pE 7]77, = _hZ]: il —k. 7/7 glh{,—k.fl?,—k)
1 " " d ' col
+ E(uj,kpi K~ Unepix) + %.fi]}ﬁk ; (2)
d
%Pi,k = T Z gk(sm + 577 — )p7 k
d col
+ % Zuy, “biifi— fid) + v (3)

Here, the Hartree-Fock renormalized energies

& = > Vafisq - (4)
q
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q

g and ¢, denoting the single particle energies of electrons and holes and
Vg being the Coulomb matrix element, include the effect of band gap renor-
malization, and the Hartree-Fock renormalized field

Z/{Lk = 7M7f,k F/’()(f)eiiw"t — Z quvf,k+q s (6)
q

M; x being the dipole matrix element and Fy(f) (wy,) denoting the ampli-
tude (central frequency) of the driving field, give rise to excitonic effects and
Coulomb enhancement. In these equations only Coulomb terms conserving
the number of carriers in each band have been taken into account which
are the dominant terms due to their small-¢ behavior. Thus, contributions
between conduction and valence bands leading, e.g., to Auger recombina-
tion and impact ionization as well as contributions leading to transitions
between the valence bands are neglected. The resulting SBE are equivalent
to the multisubband case given in [10].

The last term on the right hand side in each of the Eqgs. (1)-(3) denotes
the collision term. In the present section dephasing is treated in terms
of simple relaxation time Ty while relaxation processes of the distribution
function are neglected. A detailed quantum kinetic treatment of the collsion
terms due to carrier-phonon interaction will be discussed in the following
sections.

For the case of excitation mainly in the excitonic region of the spectrum
the SBE give more insight into the coherent, dynamics after transformation
into the exciton basis.[10, 11] The frequency w,, and wave function Pk of
the exciton state |n) in k-space representation are obtained by inserting the

ansatyz '
Pige(t) = pigee (7)
into the homogeneous part of Eq. (3), i.e., from the eigenvalue problem
(‘f{ + ‘?}k - hwn) Pix — qup?;k—l—q =0. (8)
a

Then, the polarization can be expanded in the complete and orthogonal
basis set of exciton states according to

pik(t) = Z P (t)pix (9)

where P, denotes the amplitude of the n-th exciton state. After some cal-
culations the SBE in the exciton basis are obtained:

d | * —w * n * * W
Tl = = (PR MiacFo(t)e P pi M T (1) P )

7,n
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%.f{]yl‘,fk = _Z 57/ —k. 7}; -k glh{,fkfl?,fk)
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P = —iwn Py — — o(t)e A

. 1
Lo Z p kFO ) —wr, (577]"1: + fybé,fk) + m Z Pn/

77,
e h n'x n’ nkx _n’'
X Zkak’ (&:jfk + .fji,*k) (pi,k Pix — pi,k’pi,k’) . (12)
ele!
The coupling to the light field is now determined by the exciton dipole
moment,

fn =Y P Mig. (13)
7,k

The various terms in the equations of motion can be classified according
to the order of the light field: The dominant contribution to the exciton
amplitude P, (first line in Eq. (12)) is of first order in the field. Thus, all
driving termsin Eqgs. (10),(11) are of second order in the field. The Coulomb
terms cannot be neglected in the calculation of the carrier distribution even
at low densities. However, these terms cancel in the equation of motion for
the complete carrier (or exciton) density

N =n°f :nh’zz,fﬁzz.i]},k (14)
k 7,k

which, since Vix_k = Vir_y, is given by

d 1

- — —iwry,t *7 * rwr,t !
7N =5 2 Foe P i (et B (15)

The second and third line in Eq. (12), which originate from phase space
filling, band gap and renormalization, involve products of field or exciton
amplitudes and distribution functions. Therefore they are at least of third
order in the field. If screening is taken into account additional contributions
appear due to the density-dependence of the Coulomb matrix elements
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which, again, are at least of third order in the field. Thus, in the low density
limit, i.e., up to second order in the field, the SBE in the exciton basis
(Eqgs. (12),(15)) agree with the optical Bloch equations for an ensemble of
two-level systems with frequencies w,, N denoting the total occupation of
the upper states. In this representation the linear response as well as the
exciton density in second order are exactly determined by optical Bloch
equations which enables one to interpret the results in terms of rotations of
a Bloch vector [3, 5]. Tf higher order terms are included, this analogy does
not, hold anymore since the full k-dependence of the distribution functions
is required for the third-order contributions.

In a coherent control experiment, HI. beats can be observed in the exci-
ton density as a function of the pulse delay [4] and in the four wave mixing
(FWM) signal [3]. They also modulate pump-probe signals like the differ-
ential transmission and reflection. In a coherent control FWM experiment
two pulses in the direction k; generate a polarization in the sample. A
third pulse in the direction ko interacts with this polarization and is self-
diffracted in the direction 2k, — ki where the FWM signal is measured.
In a first approximation the FWM signal is a measure for the polarization
induced by the first two pulses and, since the inhomogeneous broaden-
ing is eliminated by a time-reversal, the incoherently summed polarization
>k |Pix| is a good measure for the signal in the sense that it contains
the essential features. A full calculation of FWM signals is also possible,
in the present case, however, calculations including three pulses for a large
number of time delays are required which would be very time consuming.

Figure 1 shows the incoherently summed polarization for two series of
time delays between the pulses one and two (150 fs pulses centered at the
HH exciton), n refering to the number of HH exciton periods T, = 27 /wpy,
and n; refering to the respective number of ILH periods. For an integer value
of n the polarization is enhanced by the second pulse (constructive inter-
ference), for an integer plus one half value it is reduced (destructive inter-
ference). Due to the dephasing (T3 = 2.5 ps) it is not completely destroyed.
The quantum beats, on the other hand, are determined by n; because the
light holes are excited much weaker. The beats vanish completely if n; as-
sumes an integer plus one half value since in this case the ILH component
is essentially destroyed by the second pulse.

3. Carrier-phonon quantum kinetics: Phonon quantum beats

On the semiclassical kinetic level interaction mechanisms lead to transi-
tions between states, the transtition rates being obtained from Fermi’s
golden rule. On this level, these mechanisms are a source of dephasing
of coherent variables like interband, intersubband, and intervalence band
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Figure 1. Coherent, control of HI. quantum beats in a single quantum well. The time
delay between the pulses is given in units of the HH period (r) and the T.H period (n;).

polarizations. On a quantum mechanical level, on the other hand, they
can also be a source of coherence due to the coupling between states. In
the case of carrier-1.O-phonon interaction it has been shown theoretically
[12, 13, 14, 15] and experimentally [16] that in a quantum kinetic treat-
ment the decay of the polarization exhibits an oscillatory contribution, the
phonon quantum beats. Only recently it has been shown experimentally
that also these beats can be coherently controlled [8, 9].

Carrier-phonon quantum kinetics in a two-band model can be described
on various levels, in particular nonequilibrium Green’s functions [12, 13] or
the density matrix formalism [14, 15], both leading to the same equations of
motion on certain approximation levels. The carrier-phonon Hamiltonian
introduces new variables in the eqations of motion of the single particle
density matrices fli’h, pk and ng = <b:r1bq>7 these are the phonon assisted
density matrices

. 7 , 7
Sk+q,k = E.‘]q<clt+qbq(fk> ) Slﬁ—l—q,k = *qu<dlt+qquk> ) (16)
I 7 _ 7
T1£+21,k = E.‘]q<d7(k+q)chk> ) Tli,k)—l—q = qu<d7kb:rlck+q> ) (17)



COHERENT CONTROL OF QUANTUM BEATS 7

gq being the coupling matrix elements and b:rl (bg) denoting phonon creation
(annihilation) operators. They constitute the starting point of an infinite
hierarchy of equations of motion involving higher order density matrices. In
terms of a correlation expansion, this hierarchy is truncated by factorization
on a certain level. A discussion of this factorization can be found in [17].

The Hamiltonian for a two-band model including carrier-carrier and
carrier-phonon interaction is given by

H=3" (el +ddldy) + 3 hwo, blbg
k q

= 3 (Micko (et d 4 MEFG () d o)
k

T T T
+ qu (Ck+qchk - Ckb:rlck+q dk+qquk + dkb:rldk+q)
k,q

—I— E (Pkpklpkl+qpk a —I— (] (]k’dkl-l—qdk a QCltdltldkl‘l'qu*q) (]8)
k. k/
q

If all four-point correlations are neglected, this Hamiltonian gives rise to
the equations of motion for the single particle density matrices

d .. i
%.fl{ = 2Re Eukpk

+ 2 [2Re {Sianf — 2Re {Siucaf] - (19)

q
d i
pTE k= QR'Q{Eukpk}
+ Y [2Re {5 0w} - 2Re S o} 20)
q
%Pk = *E (5k+5 ) *%Uk (] *.fﬁ*.fﬁk)
+ Z{ U A Tlii)qurTliqu] : (21)
Dng = 30 [2Re {Sipan} + 2Re {5l ai}] (22)
k

For the phonon assisted density matrix T7(+) we obtain

d .+ +) 1 , e\ A+
%Tli’,ll = (Ehk, + & + hwop) li’ ) 7 (] — fﬁk/ - fk) Tli’ll

+ ;(ukfsﬁ/,k - uks—'k,fk’) N %(pkl‘éﬁl’k B pks{ﬁk’ikl)
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Figure 2. Coherent control of phonon quantum beats in a quantum wire for the case of
excitation by two 15 fs pulses centered at the exciton frequency.

+ salesd” [(mo et 1) (1= )+ mo e e
— el (e 1) (1 ) e e (29

with the off-diagonal Hartree-Fock terms

ceh o e,h e,h h,e

S = Z VarSiisar kepar T Vie—x Z (‘qk'+q',k+q' + Sk'+q’,k+Q') (24)
a’ a’

P (£)

Tox = - Z Vo T xa (25)
ql

and similar equations for the other phonon assisted density matrices.
Figure 2 shows the incoherently summed polarization for the case of a
quantum wire excited by two 15 fs pulses centered at the exciton frequency.
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The oscillations, which in the present case are due to a beating between the
exciton and a phonon sideband above the exciton, can be clearly controlled
by the relative phase of the second pulse. The beats are essentially absent
for the lowest and the highest value of the time delay shown in the figure.
These values correspond to 16.5 and 17.5 times the period of the phonon
sideband which is determined by the sum of exciton and beat frequency.
Thus, the behavior is the same as in the case of HI. beats shown above.
It is interesting to notice that the decay of the signal is modified by the
second pulse, a feature which has been found also in the experiment [8, 9].

4. Non-perturbative treatment of carrier-phonon interaction

The quantum kinetic theory discussed in the previous section is based on
a correlation expansion which assumes that correlations between an in-
creasing number of quasiparticles are of decreasing importance. Since this
expansion is related to an expansion in the carrier-phonon coupling matrix
element, the analysis of systems with a stronger phonon coupling requires to
take into account higher orders in the hierarchy. In this section we discuss
an alternative method which has been proposed recently [18] and which
avoids the hierarchy. This method will be applied to a simple model of a
two-level system interacting with a single phonon mode. This model, which
has already been shown to explain very well the coherent control of phonon
quantum beats in the weak coupling limit [8, 9], can be solved exactly by
the present method.

The basic idea is to substitute the single particle density matrices by
generating functions defined according to, e.g.,

faoGaa) {8a}) = (chewexp[Y aghllexp[d Babyl) .  (26)
Pk’ ({()‘q}v {ﬁq}) = (dxow QXP[Z ()‘qb:rl] QXP[Z ﬂqqu (27)

with complex numbers aq and 3q. All phonon-related higher order density
matrices can be obtained as partial derivatives with respect to aq and g
taken at agq = Bq = 0. As a result, the hierarchy of equations of motion is
transformed into a set of partial differential equations. While the treatment
of a full semiconductor model is too complicated due to the high dimension
of the equations, the following two-level model interacting with one phonon
mode, which stands for a coupled exciton-phonon system, can be solved
analytically.
The Hamiltonian including the coupling to the light field is given by

H = hQecte + hwrb™b + hg (b7 +b) cfe — WMy (E etdt + E*de) . (28)
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The dynamical variables in this case are the functions

b 51) = (deexp(abl) exp(3h)) (29)
fla, B,1) = (cTeexp(abl) exp(8h)) , (30)
n(a, 5,t) = <exp((be) exp(pbh)) , (31)

which obey the following equations of motion:

iOp = [0+ wr(B0s — ad) +g(B+ 0 +00)lp— MoF(n— 2f).(32)
i0if = [wr(B05 — 0ds) + g(8 — a)lf = Mo[Fp" — F7p, (33)
ihn = wr(Bdg —ad)n+ g(f—a)f, (34)

with pT(a, B) = p*(8*, @*). By means of the transformations

plasfit) = M ety ety (35)
f((]/,,ﬁ,f) — ew(ﬁeiwf,t_l_(ye*iwf,t) f((l/ eiiw"t, ﬁeiw"t,f) 7 (36)
n(a, B,t) = n(ae ™ gert 1) (37)

E(t) = Mgy expliQt]F(t), (38)

with Q = Q — wr, 7?2, and v = g/wr, the partial derivatives are eliminated
resulting in a set of three ordinary differential equations which can be fur-
ther simplified by setting y(«,t) = y(—a*, o, t) where y stands for p, f, and
n. The final equations of motion are

dp(o) = 1K S n(a—ye )
_9 e(y*,ye*mmf f((]/,f’)/eiiw"t) ]7 (3())

df(a)=ie [ E e ! P (o et
I efoz*wef“ﬂf‘f P((Y _l_Pye—ith) ]7 (40)

Tw 7. f]

dn(a) = —iywr, 2 Re[ae eiﬁ?ﬂmm[”emm] fla). (41)

These equations have to be solved with the initial conditions f(a,0) =
p(ev,0) = 0 and n(«,0) = exp[—nr|al?], ny, being the equilibrium (Bose)
value of the phonon occupation. From the dynamical variables we obtain
the polarization P = h/\/loef(mH'WQ)p('y e”™rt t) and the exciton density
Ne = fla=10,1).

The equations can be solved iteratively for the case of excitation by
d-pulses F(t) = Fod(t). The linear polarization is given by

PO (1) = ih M2 Fq O(t) e~ 2+ (071 mnp e WT1P) o)
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Figure 3. Coherent control of carrier density obtained from the two-level model for 15
fs pulses at T = 10K.
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At zero temperature, where ny, = 0, this result can also be written as
1 e 2 72'7 . .
P(S( )(f) = 7},]\/[3 F]O()(t) ZQ*W 7 e*i(Q‘l',?wL)t (43)
=0 J:

which shows the well-known result of phonon sidebands at multiples of the
phonon frequency above the polaron shifted exciton energy. It is interesting
to compare this exact result with the result obtained from the first order
correlation expansion:

fore 1) = Ty = A e b el ()

with 2 = (/1 +4492 — 1)/2 ~ v2. As expected, we find only one phonon
sideband, the frequency however being shifted by a factor (1 + 2x).

The exciton density up to O(F?) generated by two §-pulses with a time
delay 7 is given by

NO(7) = [ MoFol? {8(1) + 6(1—7)
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exhibiting the fast coherent control oscillations at the polaron shifted exci-
ton energy 2 as well as additional structures related to the phonon coupling.
In Fig. 3 the exciton density created by two 15 fs pulses at a temperature
of 10 K is shown as a function of 7 for three different values of the phonon
coupling. For 2z = 0.2 we find a weak modulation with the phonon fre-
quency. With increasing coupling the higher order terms do not show up as
additional frequencies, instead the minima become more pronounced lead-
ing finally to a behavior similar to a “collapse and revival”. In the lowest
part of the figure we compare the full model with the first order correlation
expansion result which, of course, are quite different at this high value of
x. Nevertheless it is interesting to notice that the very initial part below
20 fs is still in agreement which is consistent with the interpretation that
the correlations are successively built up.
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For the case of excitation by three d-pulses the FWM signal can be
calculated analytically. The polarization in the FWM direction is given by
p3)

2%27% — 77})]\/[3 EO 20(t)e7iQt+2'72(cos(w;lt)f1)

Mo Fy

_ 2 77?(4}[]51 _ iw[‘(ffﬁ)i _ _ 77:(4)[‘751 _ 77:(,4)[‘752
X{f)(fh)e 2t ++2(2e e 1-np|2—€ e %)

+0(7f1 I)eiiQt“_l_,yQ(Qefzth“ 7ezw7‘(t7t1/)71 —ng |27e77,w7‘t1/ 7e71w7‘t|2)}(46)

where the time of the pulse in direction ko has been set to zero. The FWM
signal 132(22)7,<1 for different time delays of the pulses in direction k; and
for two values of the coupling constants are shown in Fig. 4. The results
for the weak coupling are in agreement, with those given in [8] and clearly
show the coherent control of the quantum beats. By an expansion of the
exponential (for t =0, n;, = 0, t9; > 0, t37» > 0) the signal can be written
as

|P2(22)7k1 12 = const {14 cos(Qy1r) + > h(tarr, t11)} (47)

with h(ta1r, t11) = coswrtop{coswrtiy + 14 cos(Q + wr,) 1 + cos Q0 }
+ sinwrtor {sinwrtyyr + sin(Q + wr, )t — sin Q44 } which directly shows
that the beat amplitude h vanishes for (Q+wyr )t = (2n+1)7 or Q4 =
(2n+1)7 in agreement with the results of the previous sections. In the case
of a stronger phonon coupling the FWM signal in Fig. 4(b) exhibits higher
harmonics of the phonon frequency. Since now more than two transitions
are beating the oscillations cannot be anymore switched off completely.

5. Conclusions

We have presented a theoretical analysis of the coherent control of heavy-
light hole and phonon quantum beats. In all cases the quantum beats are
switched off by the second pulse if there is destructive interference for the
weaker of the two beating transitions, which in the first case was the light
hole and in the second case the phonon sideband. We have shown by an
analytical solution of a two-level model coupled to a single phonon mode
that for stronger phonon coupling higher harmonics appear in the FWM
signal and a full control of the beats is not anymore possible.
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