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Supplementary material: Simulation of open quantum systems by automated
compression of arbitrary environments

S.1. CALCULATION OF INTERMEDIATE-TIME CLOSURES

In Eq. (18) we gave an expression for the reduced system density matrix at time tn using the process tensor (PT)
for n time steps. In practical applications, it is desirable to also be able to calculate the reduced system density matrix
at intermediate times tl to extract the full dynamics of the system. Here we show how this can be extracted. As a
reminder, in the following we use the symbols ν or µ to enumerate system states, and ξ or η for environment states.

The calculation of ραl
for l < n requires the knowledge of a PT for l time steps. From Eq. (19) it is clear that,

before any matrix product operator (MPO) compression, the PT for l time steps can be obtained from the PT for
n > l time steps by tracing over the environment at that step,

∑
ξl,ηl

δξl,ηl . After compression, it is less clear how this
trace is to be executed on the inner indices dl. In principle, it is possible to track how the trace operation transforms
under the individual MPO compression steps. A more practical alternative is to make use of the unitarity of the
environment evolution and recursively obtain the PT for n− 1 time steps from the PT for n time steps.

Consider the terms corresponding to the last time step in Eq. (19):∑
ξnηn

δξnηnA
νnν̃n
ξnξn−1

Aµnµ̃n∗
ηnηn−1

=
∑
ξ

〈µ̃n, ηn−1|e
i
~HE∆t|µn, ξ〉〈νn, ξ|e−

i
~HE∆t|ν̃n, ξn−1〉. (S.1.1)

Performing the trace over the system states
∑
νn,µn

δνnµn
in addition to the trace over the environment states yields∑

νnµn

δνnµn

∑
ξnηn

δξnηnA
νnν̃n
ξnξn−1

Aµnµ̃n∗
ηnηn−1

=〈µ̃n, ηn−1|e
i
~HE∆t

[∑
ν,ξ

|ν, ξ〉〈ν, ξ|
]
e−

i
~HE∆t|ν̃n, ξn−1〉

=〈µ̃n, ηn−1|e
i
~HE(∆t−∆t)|ν̃n, ξn−1〉 = 〈µ̃n, ηn−1|ν̃n, ξn−1〉 = δµ̃nν̃nδηn−1ξn−1

.
(S.1.2)

Together with the sum over the ηn−1 and ξn−1 in the (n−1)-th time step in the PT, the term δηn−1ξn−1 again becomes
equivalent to calculating the trace over the environment modes, but at time step n− 1. Therefore, the PT for n− 1
time steps can be related to the PT for n time steps by

I
(νn−1ν̃n−1)...(ν1ν̃1)
(µn−1µ̃n−1)...(µ1µ̃1) =

∑
νnµn

δνnµn
I

(νnν̃)(νn−1ν̃n−1)...(ν1ν̃1)
(µnν̃)(µn−1µ̃n−1)...(µ1µ̃1), (S.1.3)

where ν̃ is an arbitrary system state, which we choose as ν̃ = 0. As this expression only involves outer indices and is
independent of the inner indices, it applies equally to the PT after MPO compression. Thus, given the PT for n time
steps in MPO form in Liouville space

I(αn,α̃n)(αn−1,α̃n−1)...(α1,α̃1) =
∑

dn−1...d1

Q(αn,α̃n)
1dn−1

Q(αn−1,α̃n−1)
dn−1dn−2

. . .Q(α1,α̃1)
d11 , (S.1.4)

we can obtain the PT for l time steps as

I(αl,α̃l)(αl−1,α̃l−1)...(α1,α̃1) =
∑
dl...d1

qdlQ
(αl,α̃l)
dldl−1

Q(αl−1,α̃l−1)
dl−1dl−2

. . .Q(α1,α̃1)
d11 , (S.1.5)

where the closures qdl are calculated recursively via

qdn=1 =1 (S.1.6)

qdl−1
=
∑
dl

qdl
∑
αlνl

δαl,(νl,νl)Q
(αl0)
dldl−1

. (S.1.7)

With the closures qdl the reduced system density matrix ραl
at time step tl can be extracted from the propagated

quantities Rαldl defined in Eq. (19) as

ραl
=
∑
dl

qdlRαldl . (S.1.8)
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S.2. NUMERICAL CONVERGENCE OF THE ACE ALGORITHM

The ACE algorithm, as described in the main text, is numerically convergent in the following sense: Every step
in the derivation that involves an approximation is controlled by convergence parameters, such that in principle the
error can be made arbitrarily small as the corresponding convergence parameters are taken to zero or infinity as
appropriate. Thus, in principle, exact results can be approximated to arbitrary precision given enough computational
resources.

In this section we first review the sources of numerical error that exist—time discretisation, MPO compression, and
discretisation of a continuum of environment modes. We then present a study of the tradeoff between accuracy and
the computational cost of a calculation.

A. Sources of numerical error

1. Time discretization

The starting point of the derivation of ACE is the introduction of an equidistant time grid tn = n∆t, defined by a
time step width ∆t. The maximal number of time steps nmax then determines the simulation end time te = nmax∆t.
Decomposing the total time evolution operator into system and environment parts for a time step ∆t introduces
numerical Trotter errors. For the system–environment decomposition we use a first-order expansion

e−
i
~ (HS+HE)∆t = e−

i
~HE∆te−

i
~HS∆t + ESETrotter (S.2.1)

while between different environment modes we use a second-order expansion

e−
i
~

(
HE [K−1]+HK

E

)
∆t = e−

i
~HE [K−1] ∆t

2 e−
i
~H

K
E ∆te−

i
~HE [K−1] ∆t

2 + EKTrotter. (S.2.2)

While there has been considerable work on finding rigorous bounds for Trotter errors (see e.g. Childs et al. [1] and
references therein), here we limit our discussion to a simple analysis in terms of a Taylor expansion orders. This
yields single-step error terms of the order ESETrotter = O(∆t2) and EKTrotter = O(∆t3), respectively. Regarding the
system–environment decoupling we may note however, that when the full time evolution up to the final time te is
considered, the product

P1 :=
(
e−

i
~HE∆te−

i
~HS∆t

)(
e−

i
~HE∆te−

i
~HS∆t

)
. . .
(
e−

i
~HE∆te−

i
~HS∆t

)
(S.2.3)

is related to the product obtained by symmetric Trotter decomposition

P2 :=
(
e−

i
~HS

∆t
2 e−

i
~HE∆te−

i
~HS

∆t
2

)(
e−

i
~HS

∆t
2 e−

i
~HE∆te−

i
~HS

∆t
2

)
. . .
(
e−

i
~HS

∆t
2 e−

i
~HE∆te−

i
~HS

∆t
2

)
, (S.2.4)

by the relation P2 = e−
i
~HS

∆t
2 P1e

+ i
~HS

∆t
2 . Thus, the results obtained by first-order Trotter decomposition converge

identically to those obtained by a second-order Trotter decomposition, up to evolving the initial and final states by a
half time step.

By keeping the final time te fixed and expressing the time step width ∆t = te/nmax, the total error accumulated
can be written in terms of the total number of time steps nmax. For the second-order Trotter decomposition the total

error is
∣∣e− i

~ (HS+HE)t − P2

∣∣ = nmaxO(1/n3
max) = O(1/n2

max). As the environment propagator e−
i
~HE∆t itself is also

approximated up to an error O(1/n3
max)— arising from decomposing it into different modes— the overall Trotter error

accumulated during the simulation scales as O(1/n2
max). This error can thus be made arbitrarily small by choosing a

fine enough time discretisation.

2. MPO compression

A second source of numerical error occurs when the MPO representing the process tensor is compressed. This
compression is done using a singular value decomposition (SVD), and truncation by neglecting singular values below
a given threshold. A sequential sweep of SVDs is performed across the MPO.
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For a single SVD step the Eckart–Young–Mirsky theorem [2] provides concrete error bounds: Given the SVD of a
matrix A, we define

A =UΣV † =

n∑
i=1

σiuiv
†
i =

k∑
i=1

σiuiv
†
i︸ ︷︷ ︸

=:Ã

+

n∑
i=k+1

σiuiv
†
i︸ ︷︷ ︸

=:δA

, (S.2.5)

where σi are the singular values in descending order, ui, vi the corresponding singular vectors, and k is the smallest
number such that σi < εσ1 for all i > k. Ã represents the relevant part of the matrix A, whereas δA is considered
irrelevant and is therefore neglected. The Eckart–Young–Mirsky theorem states that the matrix Ã provides the best
approximation to A of all matrices with rank k. In particular, the error in the spectral norm is ‖A − Ã‖2 = σk+1

while for the Frobenius norm ‖A − Ã‖F =
√
σ2
k+1 + σ2

k+2 + · · ·+ σ2
n. In any case, for ε → 0 one finds ‖A − Ã‖ → 0

and the low-rank approximation Ã→ A becomes exact.
Exact bounds for the accumulated error of a full line sweep are more difficult to assess. This is because, e.g., in a

sweep from right to left, the next matrix is multiplied with vectors σiui (i = 1, 2, . . . , k) from the SVD of the previous
matrix, so the result depends on the overlap between ui and the row vectors of the next matrix. Furthermore, it is a
priori not clear how strongly a given matrix element of the PT MPO contributes to the reduced system density matrix
at a given point in time, in particular because this also depends on the concrete system Hamiltonian HS . It also
remains an open question how numerical errors propagate, e.g., if small deviations from Hermitianity and positivity
of the density matrices grow exponentially or behave more advantageously.

A rigorous mathematical analysis of the error bounds for tensor network methods is beyond the scope of the present
article. Yet, it is clear that the MPO compressed object turns into an exact reformulation of the original uncompressed
PT in the limit ε→ 0. As such, in this work, we restrict further analysis to numerical convergence tests.

3. Continuum discretisation

While some open quantum systems, such as the example of spin baths in the main text, contain a finite number
of environment modes, others involve a continuum of modes that require discretisation in order to apply the ACE
algorithm. For this discretisation to converge numerically, one has to additionally demand piecewise continuity of the
environment initial state as well as the environment Hamiltonian with respect to the index k describing the continuum.

B. Numerical convergence and computational cost

To numerically test the convergence of ACE with respect to different convergence parameters, we consider again
the example of the resonant level model (first example in the main text). In particular, we focus on the case of band
width ωBW = 10γ, where visible deviations from the Markovian result can be seen.

First, using NE = 10 modes to discretise the continuum and fixed final time γte = 2.5, we investigate the numerical
error for different time step widths ∆t and MPO compression thresholds ε. Here, we define the error as

Error = max
i

∣∣nS(ti, {∆t, ε})− nS(ti, {∆t, εmin}
)∣∣, (S.2.6)

where nS
(
ti, {∆t, ε}

)
is the system site occupation at time ti = i∆t calculated using the set of convergence parameters

{∆t, ε}. Because the computation time and the convergence with respect to the threshold ε differ vastly for different
time discretisations ∆t, we use reference calculations with different εmin for each ∆t. Specifically we use εmin(γ∆t =
0.1) = 3 × 10−9, εmin(γ∆t = 0.05) = 3 × 10−10, and εmin(γ∆t = 0.01) = εmin(γ∆t = 0.005) = εmin(γ∆t = 0.001) =
10−11.

These numerical errors vs compression threshold ε are depicted in Fig. S.2.1a on a double logarithmic scale. As
expected, the numerical error generally decreases as the threshold is reduced. The threshold needed to obtain a given
numerical accuracy is found to depend strongly on the time step width ∆t. Furthermore, a common feature in all
curves is that there exists a plateau where for a broad range of thresholds no significant gain in accuracy is observed.

These facts can be explained by the distribution of singular values: The uncompressed PT MPO matrices are

directly related to the environment propagator, which for very small time steps can be approximated as e−
i
~HE∆t ≈

1− i
~HE∆t and therefore possesses matrix elements (diagonals) of order 1 as well as contributions (off-diagonals) of

order ‖HE‖∆t/~, but hardly any elements in the intermediate range. Matrix elements of vastly different orders of
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FIG. S.2.1. Convergence of ACE simulations with respect to SVD truncation threshold ε (panel a). Note the horizontal axis
goes from largest ε to smallest. The same results are also plotted as a function of the maximal inner dimension dmax (panel
b) and the total CPU time (panel c) needed for the calculations on a conventional laptop computer with Intel Core i5-8265U.
The error associated with the time discretisation (Trotter error) is depicted in panel d.

magnitude translate into singular values of different orders of magnitude, leading to a corresponding gap in the SVD
spectrum. This analysis also demonstrates that smaller time steps require smaller convergence thresholds to produce
the same level of accuracy, to avoid terms of the order ‖HE‖∆t/~ . ε being disregarded.

Figure S.2.1b depicts the results of the same calculations plotted against the maximal inner dimension dmax of the
PT. Displayed in this way, the curves calculated for different time step widths ∆t all nearly overlap, suggesting that
the maximal inner dimension is a more reliable measure of the numerical accuracy than the compression threshold ε
itself. Note, however, that in our fixed-precision algorithm, dmax is not known a priori.

For practical applications it is important to relate these parameters controlling precision to the computation time
needed to perform ACE simulations. We therefore also present the numerical error of the above calculations as a
function of the CPU time in Fig. S.2.1c. These were obtained on a conventional laptop computer with Intel Core
i5-8265U processor. For a given accuracy, the fastest computation is achieved for the largest time steps because the
PT MPO has fewer sites and, thus, fewer SVDs to perform. In particular, for this problem, we find that very accurate
results are achievable within minutes of computation time.

Figure S.2.1d, shows the Trotter error maxi
∣∣nS(ti, {∆t, εmin}

)
− nS

(
ti, {∆tmin, εmin}

)∣∣ defined as the difference
with respect to reference calculations with time step width γ∆tmin = 0.005, where for given ∆t the corresponding
best converged results with smallest threshold εmin is used. The theoretical expectation that the accumulated Trotter
error is proportional to ∆t2 (or 1/n2

max) is corroborated by a fit of the data points to this trend.
Finally, we numerically investigate the convergence of the PT with respect to the mode discretisation of a continuum

of environment modes. Figure S.2.2a shows the time evolution of the system occupation for the same Fermionic open
quantum system as discussed above. Results are shown up to final time γte = 5 using a fixed compression threshold
ε = 10−6 and a fixed time step width γ∆t = 0.05, comparing the results for different numbers of environment modes
NE spanning the total band with ωBW = 10γ. For a large number of modes NE = 100 the results shown in the main
text are reproduced, i.e. system occupation grows roughly as predicted by the Markovian limit 1− e−γt, albeit with
visible deviations. However, if the continuum discretisation is too coarse as in the case NE = 2, the description is
only accurate for a short time, after which strong deviations occur. For small NE this is inevitable, because there
is a limited set of degrees of freedom, corresponding to a limited set of frequencies controlling the dynamics of the
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FIG. S.2.2. Convergence of ACE simulations with respect to the number of modes NE used to discretise a continuum. Panel (a)
compares the time dependence of occupation for different values of NE . Panel (b) shows how NE affects the inner dimensions
of the MPO, while panel (c) shows how this affects the computation time required.

system. With increasing number of modes NE , the time at which these strong deviations appear becomes later. Here,
for NE = 8 this point is almost beyond the final time te, so a good description of environment effects is retained for
the full simulation.

The mode discretisation has a significant impact on the structure of the process tensor. In Fig. S.2.2b, the inner
dimension di at every time step ti is depicted. The typical shape of the di distribution is roughly trapezoidal; this
reflects the constraint in the bond dimension near the ends of the MPO, so that the maximum inner dimension dmax

occurs near the centre of the MPO. Notably, we find that increasing the number of modes leads first to an increase
in dmax up to a certain NE after which dmax begins to decrease. The initial increase can be explained by the PT
including more and more degrees of freedom. The eventual decrease is due to dephasing between modes with similar
frequencies. This result is consistent with recent results by Ye and Chan [3]. The largest values of dmax are found at
similar values of NE to the conditions where convergence of the result with NE is first reached, as seen in Fig. S.2.2a.

The dependence of the inner dimensions of the PT on the mode discretisation has a significant impact on the
computational resources required for the ACE method. Figure S.2.2c shows the CPU time needed for carrying out
the ACE simulation for two different final times γte = 5 and γte = 2.5. The computation time is found to increase
rapidly with NE when NE is small, but then reach an approximate plateau at large NE . (The required computation
time can even have a minimum, as seen around NE = 20 in the case γte = 5.) These trends can be explained by
a simple scaling argument: Exact SVD routines scale as d3 where d is the matrix dimension. The number of SVDs
performed in total is proportional to the number of time steps nmax times the number of environment modes NE .
Using the maximal inner dimension dmax as a proxy for the typical dimension, one expects the computation time to
scale as testimate = αnmaxNEd

3
max. With dmax extracted from the simulations, testimate is fit against the CPU times of

the curve for γte = 5. This is depicted in Fig. S.2.2c. We find that this formula, with a constant α, indeed captures
the trends in the computation time well.
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S.3. RUN TIMES AND COMPARISON TO GAUSSIAN METHODS

A. Run time for examples provided

Example Run time

Resonant level model:

NE = 2 < 1 s
NE = 4 4 s
NE = 10 56 s
NE = 100 13 h 3 min

Phonons & photons:

Construct PT phonons 1 h 14 min
Construct PT photons, ωBW = 10 ps−1 10 h 47 min
Construct PT photons, ωBW = 0.4 ps−1 17 s
Contraction of PT (combined) 40 s
[iQUAPI: phonons] [1 min 0 s]

Spins, fully polarised:

N = 10, ε = 10−10 1 min 10 s
N = 100, ε = 10−10 4 min 09 s
N = 1000, ε = 10−10 13 min 50 s

Spins, partially polarised:

N = 10, ε = 10−10 3 min 32 s
N = 10, ε = 10−13 19 min 59 s
N = 10, ε = 10−16 1 h 45 min
N = 100, ε = 10−10 5 min 30 s
N = 100, ε = 10−13 33 min 12 s
N = 100, ε = 10−16 2 h 28 min

Spins, unpolarised:

N = 10, ε = 10−10 5 min 21 s
N = 10, ε = 10−13 34 min 2 s
N = 10, ε = 10−16 4 h 40 min
N = 100, ε = 10−10 8 min 27 s
N = 100, ε = 10−13 40 min 52 s
N = 100, ε = 10−16 3 h 8 min

Example Run time

Morse potential:

SBM, M = 5 20 min 17 s
HO, M = 5 23 min 30 s
Λ = 2, M = 2 3 min 39 s
Λ = 2, M = 2, renorm. 3 min 48 s
Λ = 3, M = 3 22 min 39 s
Λ = 3, M = 3, renorm. 21 min 58 s
Λ = 4, M = 4 1 h 37 min
Λ = 4, M = 4, renorm. 1 h 36 min
Λ = 5, M = 5 4 h 4 min
Λ = 5, M = 5, renorm. 3 h 48 min
Λ = 10, M = 5 1 h 6 min
Λ = 10, M = 5, renorm. 1 h 7 min
Λ = 100, M = 5 33 min 15 s
Λ = 100, M = 5, renorm. 32 min 15 s

Superradiance:

Construct PT 31 min 39 s
Contraction of PT 2 s

Dispersive coupling:

single mode 7 s
instant. Fock 2 s
pulsed, no losses 23 min 36 s
pulsed, with losses 13 min 2 s

TABLE S.3.1. Run times for the examples discussed in the main text and the Supplementary Material. In some examples
(“phonons & photons” and “superradiance”), we use the fact that the construction of the process tensor (“Construct PT”)
using ACE and the subsequent contraction to determine time evolution can be separated. This separation is useful when one
environment is used multiple times with different system Hamiltonians.

The simulations for this article are performed on a conventional laptop computer with Intel i5-8265U processor
and 16 GB of RAM. The ACE code is available at Ref. [4]. The numerically most demanding part, the MPO
compression using SVDs, is done using the JacobiSVD routine provided by the Eigen library (version 3.4-rc1), which
calls the corresponding LAPACK routines when compiled and linked appropriately. Here, we use the LAPACK
implementation provided by the Intel MKL (version 2021.3.0). The C++ code is compiled and linked using the GCC
compiler (version 9.3.0).

The run times of the simulations for the examples discussed in the main text as well as in other sections of the
Supplemental Material are listed in Tab. S.3.1. As can be seen, typical calculation times for these examples range
between minutes to several hours, demonstrating the efficiency and practicability of ACE over a broad range of
different physical systems. The challenging simulations of spin baths with tiny thresholds ε = 10−16 require more
than the physical 16 GB of RAM, and so the times observed here are affected by swapping to disk. Note that swapping
is efficient for ACE simulations because a single MPO compression step only modifies a single MPO matrix at a time.
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FIG. S.3.1. Comparison of different numerically convergent methods for Gaussian environments: ACE, Gaussian PT calcu-
lation, and TEMPO for the example of an off-resonantly driven quantum dot coupled to a bath of phonons. To control the
non-Markovianity of the bath, the spectral density is manually restricted to a finite spectral range ∆E centred around the
energy ~δ = 1.5 meV corresponding to the detuning of the excitation, as depicted in panel a. The corresponding computation
times are shown in panel b.

B. Comparison with numerically convergent methods for Gaussian baths

In the special case of Gaussian environments, other numerically convergent methods have been established such as
the calculation of PTs for Gaussian baths devised by Jørgensen and Pollock [5] building on the TEMPO algorithm [6],
which itself is a reformulation of the iterative path integral approach iQUAPI [7]. In such methods, the augmented
density matrix is presented, compressed, and propagated in MPO representation. An implementation of these two
methods is incorporated into our ACE computer code [4].

These methods rely on the fact that for Gaussian baths, the path integral over the environment can be solved
analytically, giving explicit expressions for the Feynman-Vernon influence functional. As all these methods are nu-
merically convergent, it is an interesting question which method performs best (requires least computation time) in
which situation—restricting to Gaussian cases where all methods are available. To this end, we consider again the
example of the quantum dot coupled to phonons and subject to radiative losses discussed in the main text, focusing on
the numerically convergent modelling of phonon effects while losses are accounted for by Lindblad terms. Anticipating
that the performance of the different methods strongly depends on the memory time of the environment, we perform
calculations for various widths of the spectral density. As depicted in Fig. S.3.1a, we use the envelope of the spectral
density as in the main text, but restrict it to a finite support of ∆E centred around ~δ = 1.5 meV, corresponding to
the detuning of the excitation from the quantum dot transition. For large values of ∆E ≈ 3 meV, the memory time
of the environment is shortest, while in the limiting case for small widths ∆E → 0 only a single environment mode
energy exists and the memory time becomes infinite.

In all methods, we use a time step width of ∆t = 0.1 ps, compression threshold ε = 10−7 and initial bath temperature
T = 0 K. For ACE, we discretise the continuum ∆E on NE intervals with a density of states NE/∆E = 20 meV−1

and we truncate the environment Hilbert space per Boson mode to dimension M = 2 or M = 3. For this set of
parameters, the typical relative difference between exciton populations in the different methods is ≈ 2× 10−3.

In Fig. S.3.1b, the computation times needed for the different methods are depicted as a function of the spectral
density width ∆E. For large widths ∆E & 1.4 meV, we find the Gaussian PT calculation to be faster than both
ACE and TEMPO without memory truncation. Note, however, that TEMPO can benefit significantly from memory
truncation, as this reduces the length of the MPO chain to be compressed and propagated. Fixing the memory time
to τmem = 2.5 ps in TEMPO leads to the fastest results of all considered methods in the regime of large ∆E. Yet, for
smaller widths ∆E . 1.5 meV, the bath memory time starts to exceed 2.5 ps, which leads to visible deviations in the
occupations (not shown). The smaller (disconnected) pink dots in Fig. S.3.1b indicate data points where the relative
error with respect to Gaussian PT calculations exceeds 1%. For narrow spectral densities, we observe a cross-over
rendering ACE faster than all other methods. As shown, the required dimension M per boson mode has a large
influence on the run time for ACE.
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To summarize, in the special case of Gaussian baths, alternative methods can benefit from the existence of analytical
expressions for the influence functional describing the environment, and therefore perform faster than ACE in cases
where broad spectral densities lead to short memory times. On the other hand, for narrowly peaked spectral densities
that can be well described in terms of a few environment modes, the general method ACE can even outperform
specialised methods for Gaussian baths. Finally, it is noteworthy that our computer code produces Gaussian PTs
that are completely compatible with the PTs utilised by ACE, paving the way for prospective hybrid approaches for
spectral densities with sharp peaks on top of broad continua.
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S.4. ENVIRONMENT MODES WITH ANHARMONIC POTENTIALS

In the main text, we present ACE simulations for an open quantum system coupled to a bath of anharmonic
environment modes whose free evolution is governed by the Morse potential. Here, we lay out the full numerical
treatment starting from the Schrödinger equation of a single environment mode for an arbitrary potential V (r)
directly from a numerical representation of the potential on a real space grid.

A. Finite differences to find environment states

We start from the one-dimensional Schrödinger equation for a given potential V (r):

H =− ~2

2m

∂2

∂r2
+ V (r). (S.4.1)

We first map this onto a dimensionless ordinary differential equation by introducing a characteristic length scale a0 and
energy scale ε = ~2/(2ma2

0), and defining the dimensionless coordinate x = r/a0. We then define the dimensionless
Hamiltonian

h :=
1

ε
H = − ∂2

∂x2
+ v(x), (S.4.2)

v(x) :=
1

ε
V (a0x), (S.4.3)

where v(x) is the dimensionless potential. The dimensionless problem is solved by a finite differences method, where
a real space grid xj = x0 + j∆x with width ∆x and Nx sample points is introduced and the second derivative is
approximated by

∂2

∂x2
f(xi) =

f(xi−1)− 2f(xi) + f(xi+1)

∆x2
. (S.4.4)

The ODE in Eq. (S.4.2) then takes the form of a symmetric tridiagonal matrix, which is diagonalized numerically.
For simulations in ACE, we work in the truncated energy eigenbasis accounting for only the M lowest energy

eigenstates of a given mode. The energy eigenvalues Ei of the original problem are obtained by multiplying the
eigenvalues of h with ε. The operators describing the system-environment coupling are evaluated in the truncated
basis depending on the concrete details of the model. For example, if the system couples to the environment modes via
the position operator r̂, one has to numerically evaluate matrix elements 〈i|r̂|j〉 = a0〈i|x̂|j〉 with i, j ∈ 0, 1, . . . ,M −1.

B. Example: Harmonic oscillator

As a reference, we first consider the example of the harmonic oscillator potential V (r) = mω2

2 r2. Defining length

and energy scales a0 =
√

~
mω and ε = ~ω

2 , the corresponding dimensionless Schrödinger equation is

h :=− ∂2

∂x2
+ x2. (S.4.5)

Back-transforming the numerically obtained eigenvalues of h : 1, 3, 5, . . . , by multiplying with ε, one recovers the
series En = ~ω

(
n + 1

2

)
with n = 0, 1, 2, . . . . From the conventional definition of the harmonic oscillator climbing

operators it follows that a0x̂ = r̂ =
√

~
2mω

(
a†+a

)
= a0√

2

(
a†+a

)
. Consequently, to enable a comparison with the spin

Boson model, we consider an environment Hamiltonian for ACE simulations of the form

HE =
∑
k

~ωk
(
a†kak +

1

2

)
+
∑
k

~gk(a†k + ak)|e〉〈e|

=
∑
k

M−1∑
j=0

~ωk
Ej
2ε
σkjj +

∑
k

~gk
M−1∑
i,j=0

(√
2〈i|x̂|j〉

)
σkij |e〉〈e|, (S.4.6)

where σkij describes the effect of the single-particle operator |i〉〈j| for the k-th environment mode. As shown in Fig. 5
of the main text, this procedure perfectly reproduces the results of the spin Boson model.
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C. Example: Morse potential

The Morse potential [8] is an asymmetric anharmonic potential with a finite number of bound states below a
continuum of unconfined states. It is often used to describe molecular vibrations with a finite dissociation energy [9].
It takes the form

V (r) =De

(
e−2(r−re)/a0 − 2e−(r−re)/a0

)
, (S.4.7)

where De is the well depth, re is the position of the minimum of the potential, and a0 defines its spatial extent.
Here, we use a0 as the length scale and shift the coordinate system such that re = 0. The Morse potential is made
dimensionless

v(x) =Λ2
(
e−2x − 2e−x

)
(S.4.8)

by introducing the parameter Λ =
√
De/ε =

√
2ma2

0De/~2. The Morse potential is known to have M bound states [8],
where M is the largest integer smaller than Λ + 1

2 , with energies

En = −ε
(

Λ− n− 1

2

)2

= ε

[
− Λ2 + 2Λ

(
n+

1

2

)
−
(
n+

1

2

)2
]
. (S.4.9)

For deep potentials Λ→∞, the spectrum of the lowest states becomes equivalent to that of a harmonic oscillator with

~ω = 2εΛ, which is consistent with the second-order Taylor expansion around r = re being V (r) ≈ −De+mω2

2 (r−re)2.
For general Λ, the level spacings between confined states are

∆En = En+1 − En = ~ω
(

1− n+ 1

Λ

)
. (S.4.10)

The energy difference between first excited state and ground state is ∆Eg = ~ω
(
1− Λ−1

)
=
√

2~2De

ma2
0
− ~2

ma2
0
.

In Fig. 5a in the main article, the five bound eigenstates of the Morse potential with Λ = 5 obtained from numerical
finite-differences calculations are depicted. In contrast to harmonic oscillator wave functions, the anharmonicity of
the Morse potential manifests itself in the decreasing level spacings for higher states. Furthermore, the wavefunctions
are strongly asymmetric leading to nonzero values of the average position operator 〈i|x̂|i〉 for the i-th state. This
non-zero expectation has a significant impact on the system-environment coupling.

Note that the matrix element of the dimensionless position operator x̂ between subsequent eigenstates of the Morse
potential behaves as 〈i+1|x̂|i〉 →

√
i+ 1/

√
2Λ for Λ→∞, so that a situation comparable with the independent-boson

model in this limit requires an environment Hamiltonian of the form

HE =
∑
k

∑
j

~ωkẼjσkjj +
∑
k

~gk
M−1∑
i,j=0

(√
2〈i|x̃|j〉

)
σkij |e〉〈e|, (S.4.11)

with Ẽj = Ej/∆Eg and 〈i|x̃|j〉 =
√

Λ〈i|x̂|j〉.
With nonzero diagonals 〈i|x̂|i〉 for finite Λ, the asymmetry of the potential leads to the additional effect of a

renormalisation of the system excited state energy by a value of ∆E =
∑
k ~gk

√
2Λ 〈x̂〉kE =

∑
k ~gk

√
2Λ Tr

(
x̂ρkE

)
,

which depends on the state of the environment.

D. Details of the calculation and parameters

For the ACE simulation depicted in Fig. 5 in the main article, we consider a continuously driven two-level sys-
tem with system Hamiltonian HS = ~

2 Ω
(
|e〉〈g| + |g〉〈e|

)
. The environment is described by the Hamiltonian HE in

Eq. (S.4.11) with parameters ωk and gk sampling a Lorentzian spectral density

J(ω) = C
1

π

γ

(ω − ωc)2 + γ2
. (S.4.12)

We do this by discretising ωk/Ω equidistantly in the range [0, 7.5] with NE = 100 modes, and setting gk =
√
J(ωk)∆ω,

where ∆ω is the distance between subsequent ωk sample points. Here, we set ~ = 1, and fix the parameters of the
spectral density to C = 0.1Ω2, γ = 0.1Ω, and ωc = Ω. The corresponding values gk/Ω are plotted in Fig. 5b in the
main article. The environment modes are initialised with thermal states at temperature kBT = 0.5Ω.
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S.5. SUPERRADIANCE OF TWO QUANTUM EMITTERS

In this section we present an additional illustration of the potential of ACE. We consider the radiative decay of two
quantum emitters coherently coupled to the same radiation field as depicted in Fig. S.5.1a. If the distance d between
the emitters is much smaller than the wavelength λ associated with the fundamental transitions of the emitters, both
emitters couple with the same phase to the radiation field. This gives the Hamiltonian of photon mode k as

Hk
E =~ωka†kak + ~gk

[
a†k
(
|g1〉〈e1|+ |g2〉〈e2|

)
+ h.c.

]
, (S.5.1)

where |gi〉 and |ei〉 denote the ground and excited state of emitter i = 1, 2 and a†k creates a photon in mode k. In
analogy to the first example in the main article, our environment is a discretised quasi-continuum of electromagnetic
modes with a density of states which would correspond to keeping the Fermi’s golden rule rate for the decay of a
single emitter, κ, fixed. We admit in general a detuning δ between the transitions of the two emitters, which enters
the system Hamiltonian HS = ~δ

2

(
|e1〉〈e1| − |e2〉〈e2|

)
. The initial conditions are chosen such that both emitters are

excited at time t = 0.

a b c
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FIG. S.5.1. Transition between independent and superradiant emission of two proximal optical dipoles. a, Two
quantum emitters detuned by an energy ~δ and separated by a distance d much smaller than the wavelength λ corresponding to
the emitter transitions. b, Radiative decay of two independent emitters. c, Superradiance of two coherently coupled emitters.
The transition through the symmetric state |+〉 has twice the rate compared to that of independent emitters whereas the
transition through the antisymmetric state |−〉 is forbidden. d, ACE simulations for different detunings δ and analytic results
for independent emission and for coherent emission in the superradiant regime of two emitters.

This situation is interesting as it constitutes a minimal setup for superradiance: If the emitters are distinguishable,
e.g., if the detuning δ is large, both emitters radiatively decay with a rate κ, as depicted in Fig. S.5.1b, so that the
sum of the occupations decays as 2 exp(−κt). If, however, the emitters are indistinguishable δ = 0, the coherent
coupling makes it necessary to derive the respective decay rates in the symmetrised basis including the states |±〉 =(
|e1, g2〉 ± |g1, e2〉

)
/
√

2. The dipole for transitions involving the symmetrised state |+〉 is larger than that of a
single emitter, whereas it is zero of the antisymmetrised state |−〉. Consequently, |−〉 is dark and the decay takes
place from |e1, e2〉 to |+〉 and from |+〉 to |g1, g2〉 with the rate 2κ, as depicted in Fig. S.5.1c. Taking into account
the dynamics of the intermediate state occupations, the total occupation of the two indistinguishable emitters is
ntot = 2(1 + κt) exp(−2κt) [10].

Figure S.5.1d shows the total occupation of the two emitters for δ = 0, δ = κ, and δ = 10κ obtained using the ACE
method as well as the analytic results corresponding to the case of distinguishable and indistinguishable emitters.
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For δ = 10κ, the ACE simulation agrees with the exact result for independent emitters, while for δ = 0 the result
for coherently coupled indistinguishable emitters is reproduced. In the intermediate regime δ = κ, the dynamics can
be understood qualitatively by interpreting δ as a perturbation facilitating a rotation from the symmetric |+〉 to the
antisymmetric |−〉 state. As the latter is dark, the total occupation at long times is found to be even slower than the
decay of independent emitters.

This example demonstrates that in a situation where rate equations crucially depend on the basis in which they
are derived, the ACE reproduces correct results independent of the basis. Thus, even in Markovian scenarios, ACE
simulations can have an advantage over conventional techniques in that it can be applied straightforwardly in an
arbitrary basis.

On the technical side, we have solved the dynamics of a four-level system, showing that the method is not restricted

two-level systems. To achieve this, we have made use of the fact that the matrices Q(αl,α̃l)
dldl−1

are identical for some

combinations of (αl, α̃l). This can be done by analogy with the method devised for iQUAPI [11], using a decomposition
into groups with identical couplings. With this, we only compute non-redundant values, which reduces the 256 possible
combinations of (αl, α̃l) to 18. These groups can be identified numerically from the specified environment Hamiltonians
Hk
E , so that this step is also automated.
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S.6. DISPERSIVE COUPLING

Here, we consider a toy model of a TLS dispersively coupled to a multi-mode microcavity, in order to demonstrate
several remaining aspects of the generality of ACE that were not covered in previous examples. Specifically: non-
Gaussian interactions due to non-linear system-environment coupling, time-dependent driving of the environment,
and non-unitary evolution of the environment modes.

A common situation in which non-Gaussian environments emerge is when the coupling to the environment
is non-linear in environment mode creation and annihilation operators. The simplest case is that of quadratic
system-environment coupling, as in the case of dispersive coupling described by an interaction Hamiltonian HI =∑
k ~gka

†
kakσz. Such a coupling arises, e.g., in an effective description of a two-level system (TLS) coupled to a

microcavity in the limit where the detuning between TLS and cavity is much larger than the coupling strength [12].
The main effect of dispersive coupling is that the TLS transition energy experiences a shift depending on the cavity
photon number and, vice versa, the cavity mode energy is modified by the excited state population ne of the TLS.
The former paves the way for quantum non-demolition measurement of the cavity photons by probing the TLS [12].

We consider the setting depicted in Fig. S.6.1a: A TLS is coupled to a microcavity that supports multiple discrete
photon modes which can be individually addressed by external driving. The cavity modes are assumed to be detuned
far enough from the fundamental TLS transition that the TLS-cavity coupling is well described by a dispersive
interaction. The initially empty cavity modes are then driven one-by-one by short external pulses centred around
times τk, k = 1, 2, 3, 4. As a result of the dispersive coupling, this leads to a shift of the TLS transition energy, which
is probed by driving the TLS directly and continuously with a driving field (driving strength Ω) that is resonant with
the bare TLS transition frequency.

To this end, we apply ACE to the Hamiltonian H = HS +
∑
kH

k
E with

HS =
~
2

Ω
(
|e〉〈g|+ |g〉〈e|

)
, (S.6.1)

Hk
E =~ga†kakσz + ~ωka†kak +

~
2
Gk(t)

(
a†ke
−iωkt + ake

iωkt
)
, (S.6.2)

using model parameters Ω/g = 8.5π/10, and ωk/g = 10 + k, as well as convergence parameters g∆t = 0.01 and
ε = 10−9 accounting for up to four bosons per cavity mode.

In a first step, to aid understanding of the general case, instead of modelling the cavity mode excitation explicitly
by pulses with envelope Gk(t), we consider the instantaneous preparation of one-photon Fock states. This corresponds

to applying creation operators a†k to the forward propagating part of the environment mode Liouville propagator, and
the annihilation operators ak to the backward propagating part at time gτk = 10k for the k-th mode. The results
are depicted in Fig. S.6.1b and indeed show that whenever a photon is added to a cavity mode, the observed Rabi
oscillations of the TLS become more and more off-resonant as indicated by their decreasing amplitude and increasing
frequency.

Next, we consider explicit time-dependent driving of the cavity modes by Gaussian pulses with

Gk(t) =
Ak√
2πσ

exp

[
− (t− τk)2

2σ2

]
, (S.6.3)

with σ = τFWHM/(2
√

2 ln 2), gτFWHM = 0.2, and Ak = 2. These parameters are chosen such that after the k-th pulse

the cavity photon number 〈a†kak〉 ≈ 1. As can be seen in Fig. S.6.1c, the TLS dynamics is now more complicated.
As seen for instantaneous Fock state preparation, the oscillation amplitudes are reduced when another cavity mode
is excited, however the signal now involves more than a single frequency. This is due to the fact that the external
driving as described by Hk

E induces coherent states as opposed to one-photon Fock states, so that now contributions
corresponding to Fock states with n = 0, n = 2, n = 3, and n = 4 are also excited with a finite probability. The joint
state of TLS and cavity is therefore best discussed in terms of sectors with fixed photon and excitation numbers n and
ne, respectively. This can be illustrated by considering a single cavity mode, where the total system plus environment
is tractable without compression, so that the total system can be propagated as a single, closed quantum system.
This provides access to the full state including photon-number-resolved TLS populations |e, n〉, where |e〉 refers to the
excited state of the TLS and n is the cavity photon number. These are shown in Fig. S.6.1d. This calculation agrees
with the ACE simulations in Fig. S.6.1c up to time τ2, when a second mode becomes involved. This demonstrates
that the complicated evolution of the TLS occupation is just a sum of contributions from individual n-photon sectors,
each evolving with a single, well-defined frequency.

Finally, because the starting point of ACE are the propagators of the environment modes in Liouville space, it
is straightforward to include non-unitary evolution of the environment, such as loss terms that directly affect the
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FIG. S.6.1. a: Sketch of a TLS dispersively coupled to a multi-mode microcavity, resulting in changes of the effective transition
frequency of the TLS when the cavity modes are driven externally by pulses arriving at times τk. The TLS itself is continuously
driven with bare Rabi frequency Ω, allowing one to detect signatures brought about by changes of the transition frequency.
Photons are lost from the cavity modes with rate κ (but κ = 0 for panels b-d) b: Evolution of the excited state population ne

when the pulses exciting the cavity modes are replaced by an instantaneous change of the state of the i-th cavity mode from the
vacuum to the one-photon Fock state at time τi indicated by blue vertical lines. c: Excited state population when the cavity
modes are excited by Gaussian pulses. d: Numerical simulation accounting for a single cavity mode as part of the system. The
total TLS excitation is presented as well as the photon-number-resolved TLS excitations. e: Like c but additionally accounting
for non-zero photon loss rate κ = 0.1g.

dynamics of the environment modes. Including Lindblad terms

κ

[
akρa

†
k −

1

2

(
a†kakρ+ ρa†kak

)]
(S.6.4)

describing the loss of photons with rate κ = 0.1g to the environment propagator, one obtains the results depicted in
Fig. S.6.1e. While generally very similar to the behaviour in the case without losses shown in Fig. S.6.1c, losses with
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a finite rate κ are found to lead to more efficient dephasing as they intermix sectors with different photon numbers.
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