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I. INTRODUCTION

The calculation of the optical response of molecular and semiconductor
materials is an open challenge that has attracted great attention in re-
cent years [1–9]. To be specific we shall focus in this article on conjugated
polyenes. However, the results we discuss apply as well to other molecu-
lar systems and semiconductor nanostructures. Although the conventional
sum over states approach [9–13] or multiconfiguration self-consistent field
theories with large basis sets [14–16] provide an accurate description of
small oligomers, their application to longer chains is not practical due to the
rapidly growing number of configurations with system size. Furthermore,
the summation over all states leads to delicate cancellations, which have
to be performed properly in order to guaranty size-consistency[8, 17–20].
Therefore, for these systems a less demanding reduced description is needed
that still contains the essential physics. Simple essential states models [21]
often lead to reasonable qualitative fits [22], but it is still an open question,
how these states and their effective couplings can be constructed given the
microscopic parameters of the many-body Hamiltonian, without having to
diagonalize the problem. Configuration-interaction (CI) calculations tak-
ing into account all single and/or double configurations can be carried out
for quite large systems[23–26], but are, like all truncated CI schemes, not
size-consistent[27]. The real-space reduced single-electron density-matrix
on the other hand offers a very powerful and intuitive way to deal with
this situation. Applications of this approach have already lead to valuable
insights into the dynamics of longer polymer chains [28–31]. So far these
calculations have been limited to the time dependent Hartree Fock (TDHF)
level[32] of description and have thus neglected many-body correlations be-
yond the mean field treatment. Experiments [33–35] as well as ab initio
calculations for small systems strongly suggest that these correlations are
responsible for some of the unique features of polymers, like the existence of
low lying excited states of Ag symmetry [36–40]. Furthermore, explanation
of all biexcitonic features [41–44] certainly requires a treatment beyond the
TDHF approach. In the present paper we extend the TDHF treatment to
calculate the linear and nonlinear optical response of polyenes, taking into
account correlations between pairs of excitons. Our method is based on
a cluster decomposition of n-point real space density-matrices and will be
described in detail in section III. Coupled-cluster methods have proven to
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be among the most powerful tools of quantum chemistry for incorporating
many-body correlations in calculations of ground state properties[45–47]
or excited state energies [48–50]. While these calculations start from an
ansatz for the many-body wavefunction, our approach is entirely formu-
lated in terms of reduced density-matrices. Nevertheless, we will show in
section IV how these approaches are related.

We proceed as follows: After specifying the model in section II, we
present in section III the cluster decomposition of higher order density-
matrices in its conventional form. This decomposition results in a hierarchy
of equations of motion for higher order correlation functions, also known
as the Quantum Bogolyubov-Born-Green-Kirkwood-Yvon (QBBGKY)-
hierarchy [51, 52]. In density-matrix theory, the QBBGKY-hierarchy plays
the same role as the Martin-Schwinger-hierarchy[53] in the multi-time
Green function theory. In section IV we then establish the connection to
a coupled-cluster type ansatz for the wavefunction, and discuss the prob-
lems commonly encountered when these approaches are implemented as
truncated schemes. Both the truncated QBBGKY-hierarchy as well as
truncated coupled-cluster schemes are known to be plagued by consistency
problems which under certain conditions can lead to unphysical predic-
tions. In order to remedy the main problem of the QBBGKY-hierarchy we
reformulate the corresponding equations of motion in section V in terms
of a new set of contraction-free correlation functions. We show how this
modified hierarchy can be used to derive systematically closed equations
of motion for the relevant correlation functions, which do not suffer from
these consistency problems.

II. THE MANY-ELECTRON MODEL

The electronic properties of non-relativistic many-electron systems can
be described using the following Hamiltonian

H = Hhop +Hcoul +Hopt , (1)

where Hhop accounts for hopping transport between atomic sites.

Hhop =
∑

m,n

tmn c
†
mcn . (2)

The Fermion operators c†n, cn describe the creation (annihilation) of elec-
trons in atomic spin orbitals at sites jn with spins σn. tnm is the hopping
matrix element. The Coulomb interaction is given by

Hcoul =
1

2

∑

klmn

Vklnm c†kclc
†
mcn . (3)

In this article, we assume a simplified form of the Coulomb interaction

Hcoul =
1

2

∑

n,m

Vnm c†ncnc
†
mcm , (4)

which is the form used in semiempirical models for the π electrons in
polyenes. For polyenes, Vnm is in specific applications mostly taken to
be of the Ohno form Vnm = U/

√

1 + (rnm/a0)2 [10, 54]. This is known as
the Pariser Parr Pople (PPP) model. Next neighbor interaction of Hub-
bard type has been used as well[55]. All results derived in this article can
be easily generalized to the case of a more general interaction (eq. (3)).
However, since all basic concepts can readily be explained using the form
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(4), we present explicit formulas only for that case, in order to keep the
notation simple.

The last term in (1) represents the coupling to the optical field E(t)
polarized along the z-axis, and is given by

Hopt = −E(t) P̂ , (5)

where the molecular polarization operator takes on the form

P̂ = −e
∑

n

zn c
†
ncn . (6)

Here, −e is the electron charge and zn is the z-coordinate of the n-th atom.

III. CLUSTER DECOMPOSITION AND EQUATIONS OF

MOTION FOR HIGHER ORDER CORRELATION FUNCTIONS

In the density-matrix approach the basic dynamical variables are equal
time expectation values of normal ordered fermion operators[57, 58]: Cab =

〈c†acb〉, Cabcd = 〈c†ac
†
bcccd〉, Cabcdef = 〈c†ac

†
bc

†
ccdcecf 〉, · · ·. Equations of mo-

tion for these quantities are readily obtained by taking expectation values
of the Heisenberg equations of motion:

ih̄Ẋ + [H,X ] = 0 . (7)

where X can be any of the above operators. The two-point density-matrix
Cab is of particular interest for the calculation of the optical response, as
it is directly related to the optical polarization via equation (6).

〈P̂ 〉(t) = −e
∑

n

zn Cnn(t) . (8)

Unfortunately, the corresponding equation of motion (7) is not closed; in-
stead, it contains Cabcd as a source, which in turn is coupled to Cabcdef .
Equations (7) therefore form an open hierarchy of equations of motion.
The most crucial step in any practical application of the density-matrix
is finding a truncation procedure in order to close the hierarchy. In the
form (7) ,however, the hierarchy is not well suited for truncation, because
correlated and uncorrelated contributions are mixed. In order to separate
them it is desirable to reformulate the dynamics in terms of correlation
functions C̄ab , C̄abcd etc., where the n-th order correlation function can be
interpreted as a measure of genuine correlations between n-particles. A sys-
tematic way for defining these correlation functions is provided by a cluster
decomposition of the n-point density-matrices which gives[51, 52, 56]:

Cabcd = Cbc Cad − Cac Cbd + C̄abcd ,

Cabcdef = Ccd C̄abef − Cbd C̄acef + Cad C̄bcef − Cce C̄abdf

+Cbe C̄acdf − Cae C̄bcdf + Ccf C̄abde − Cbf C̄acde

+Caf C̄bcde + Ccd (Cbe Caf − Cbf Cae)

−Cce (Cbd Caf − Cbf Cad) + Ccf (Cbd Cae − Cbe Cad) + C̄abcdef ,

... . (9)

The right hand side of (9) is obtained using the following prescription:
we factorize the density-matrix on the left hand side in all possible ways
into products of correlation functions of lower order, and then add these
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terms with a sign determined by the permutation needed to rearrange the
corresponding indices. The correlated part C̄ associated with each density-
matrix C is then defined as the difference between C and the sum of all
factorizations. Physically, the factorized terms represent contributions to
the density-matrices arising from mutually uncorrelated subsystems (clus-
ters). The contributions C̄ result only from interaction processes, where
all particles corresponding to the indices of these functions are involved.
These functions are therefore referred to as the irreducible part of the corre-
sponding density-matrix [52]. For non-interacting particles all correlation
functions with four or more indices, often denoted higher order correlation
functions, vanish identically. The signs in (9) ensure that at any order
the correlation functions obey the same symmetry relations with respect
to the exchange of identical fermions as the density-matrices themselves.
Correlations brought forth by the Pauli statistics rather than the interac-
tion are therefore accounted for at any level of the hierarchy formed by the
functions C̄. Further general properties of the above decomposition have
been derived in 51.

Using the definition (9) and the Heisenberg equations of motion for the
density-matrices, it is straightforward to reformulate the dynamics in terms
of the correlation functions C̄. Keeping terms up to the four-point level,
we obtain the following equations of motion

ih̄∂tCab =
∑

j

{tbj Caj − tja Cjb} +
∑

j

(Vbj − Vaj) {C̄ajjb − Caj Cjb}

+φba Cab + eE (zb − za)Cab , (10)

ih̄∂tC̄abcd =
1

2
A[

∑

j

{tdj C̄abcj − tja C̄jbcd} + (Vcd − Vab)Cbc Cad]

−
1

2
A[

∑

j

(Vdj + Vcj − Vbj − Vaj) {Caj C̄jbcd + Cjd C̄abcj}]

+(Vcd − Vab + φcd + φda) C̄abcd +A[Cbc

∑

j

(Vcj − Vbj){C̄ajjd − Caj Cjd}]

+eE (zd + zc − zb − za) C̄abcd +
∑

j

(Vdj + Vcj − Vbj − Vaj) C̄abjjcd , (11)

with

φab ≡
∑

j

(Vaj − Vbj)Cjj .

Here, the action of the anti-symmetrizing operator A on an arbitrary func-
tion Fabcd is defined as A[Fabcd] = Fabcd − Fbacd − Fabdc + Fbacd.

Closing the hierarchy on the lowest level, i.e. setting C̄abcd = 0, leads
to the TDHF equations. The next higher level, denoted SUB(2) [59], is
obtained retaining the subset of all two-pair correlations described by C̄abcd

in (11), while neglecting the higher order correlations C̄abcdef describing
three or more pairs. In general, truncating the hierarchy at the SUB(n)
level means keeping the subset of all correlation functions with less or equal
than 2n indices, while neglecting all higher order correlations.

A formal analysis of the level of description obtained by keeping two
pair variables has previously been carried out for Frenkel excitons [61, 62],
for direct gap semiconductors[56, 63–65] and and for nuclear many-body
problems[51, 66]. Successful applications of this scheme have been reported
in all three of these fields [61, 67–76].

For the standard band model of direct gap semiconductors [57, 58] it
has been shown[63] that the application of the above factorization scheme
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leads to equations that can in principle be used to calculate the optical
response rigorously up to third order in the field. Although polyenes can
be regarded as one dimensional semiconductors, there are two essential
differences between the PPP Hamiltonian and the band model: (i) the
ground state of the band model is uncorrelated, and (ii) the material part
of the band model Hamiltonian conserves the number of electron-hole pairs.
The above factorization scheme therefore leads to approximate results in
the PPP case even in the low excitation regime. In the next section we will
further clarify the level of accuracy obtained by this procedure.

When the system is assumed to be unexcited before the action of the
laser field, equations (10) and (11) have to be solved with the ground
state values of Cab and C̄abcd as initial conditions. These values can in
principle be obtained from any method that gives the ground state wave
function. A self-consistent scheme to calculate these values as stationary
points of the QBBGKY-equations has been proposed in 60; But in the
applications worked out so far, it has turned out to be sufficient to start
initially from the Hartree-Fock ground state. This is certainly true for the
Frenkel-exciton system and the direct gap semiconductors, because there
are no ground state correlations in these models. For the PPP model of
conjugated polyenes, the Hartree Fock ground state has an overlap with
the exact ground state of more than 90% [38]. Taking the Hartree Fock
ground state as initial condition may therefore be appropriate even in this
case.

IV. CONNECTION TO COUPLED-CLUSTER THEORIES

In this section we show that the above factorization scheme can alterna-
tively be derived using an ansatz of coupled-cluster type for the many-body
wavefunction. To be specific we consider the wavefunction

|ψ〉 ≡ exp(S)|ψII〉eiϕ ≡ exp(S) exp(SII)|ψ0〉e
iϕ , (12)

S ≡
∑

klmn

βkl
mn c

†
kc

†
l cmcn , SII ≡

∑

ij

αi
j c

†
i cj ,

with αi
j = −αj∗

i , βkl
mn = −βnm∗

lk , (13)

where |ψ0〉 is the Hartree Fock ground state and α, β, ϕ are time dependent
parameters. The ansatz (12) belongs to the class of unitary coupled-cluster
wavefunctions UCC [77]. We have written the part with double excitations

(S) and the part with single excitations (SII) as two exponentials like
in the Brueckner coupled-cluster ansatz [78, 79]. The single excitation
part ensures that orbital rotations are fully taken into account. In the
limiting case β = 0, (12) reproduces therefore the TDHF wavefunction
[78]. Starting from (12), the n-point density-matrices can be expressed in
terms of the parameters α, β of the wavefunction. To illustrate this we
introduce the Liouville space operator (superoperator) counterpart to S by
its action on an arbitrary operator A

S̃ A ≡ [S,A] . (14)

For Cab we thereby obtain

Cab =
∑

n=0

(−1)n

n!
〈φII|(S̃n c†acb)|φ

II〉 . (15)

Similar expressions can be deduced for the higher order correlation func-

tions. As |φII〉 represents a single slater determinant, the expectation value
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in (15) reduces to sums of products of the function CII
ij ≡ 〈φII|c†i cj |φ

II〉
by Wick’s theorem. Furthermore, the expectation value of the n-th term
in (15) is easily seen to be of order O(βn). Analogous expressions may
be found for the higher order density-matrices. Inserting these expressions
into the definition (9) of the corresponding correlation functions we find
after a tedious but straightforward calculation

C̄abcdef = O(β2) , (16)

which means that the ansatz (12) up to linear order in β reproduces the
decoupling scheme based on the neglect of the six-point correlation func-
tion C̄abcdef . The expansion involved in the above derivation is analogous
to the procedure invoked in the derivation of the linear coupled-cluster
approximation (L-CCA)[27, 80] used for the calculation of ground state
energies.

Although we have demonstrated that the coupled-cluster ansatz and the
QBBGKY-hierarchy are closely related, in practical applications these two
approaches have lead to quite different computational schemes, each en-
countering its own characteristic problems.

The most serious problem connected with the SUB(2) dynamics of the
QBBGKY-hierarchy is that the truncation violates fundamental trace rela-
tions; Thus, for an N -particle system the density-matrices obviously have
to fulfill the relations:

(N − 1)Cab =
∑

j

Cajjb , (N − 2)Cabcd =
∑

j

Cabjjcd, · · · .

This implies for the correlated parts:

K̄ab ≡
∑

j

C̄ajjb =
∑

j

Caj Cjb − Cab ,

K̄abcd ≡
∑

j

C̄abjjcd =

∑

j

{Caj C̄jbcd + Cbj C̄ajcd + Cjc C̄abjd + Cjd C̄abcj} − 2 C̄abcd . (17)

The truncated QBBGKY equations of motion do however preserve these
relations only when the truncation is at the lowest (TDHF) level. For the
SUB(n) n ≥ 2 dynamics it has been shown that this violation can lead to
unphysical results in certain cases [59, 81]. Whether or not the principal
shortcomings of this scheme pose a severe problem strongly depends on the
specific system and application under consideration; e.g. the calculation of
the third order response within the band model of direct gap semiconduc-
tors is one extreme case, where the above inconsistency has no effect at all,
because the contributions violating the trace relations are of higher order in
the optical field. The same is true for Frenkel exciton systems[61, 62, 67].
Also the worked out applications in nuclear physics [73–76] are encouraging.
However, in highly correlated systems like the PPP model of conjugated
polyenes, it has to be expected that taking care of the trace relations is
crucial for a successful application of the density-matrix. We will address
this problem in section V.

Coupled-cluster theory, on the other hand, is an alternative approach
which does not suffer from the trace problem, because trace relations like
(17) are automatically fulfilled by any density-matrix calculated from an
arbitrary N -particle wavefunction. But the price to be paid for tractabil-
ity within coupled-cluster calculations of dynamic properties is only de-
ferred. In principle, the time-dependent variational principle underlying
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the Schrödinger equation could be used to obtain equations of motion for
the parameters in the coupled-cluster wavefunction at any SUB(n) level.
However, this procedure is usually not applied in practice, because the
resulting equations are too complicated to be of practical use especially
for large systems[59]. Instead, equations of motion for the parameters of
the coupled-cluster wavefunction are commonly obtained by projecting the
Schrödinger equation for the exact wavefunction on n-particle, n-hole am-
plitudes [82–86]. This is equivalent to the variational principle only for
an untruncated scheme. These projection techniques are essential in order
to derive tractable dynamic equations. That is the main reason why in
most applications of the coupled-cluster approach the wavefunction is not

parameterized in the unitary form (12); instead the operators S and SII

usually contain only excitation operators (i.e. operators c†µ̃cλ, or c†µ̃c
†
ν̃cλcκ,

where λ, κ are restricted to occupied orbitals with respect to the Hartree-
Fock ground state, while µ̃,ν̃ refer to unoccupied orbitals). The evaluation
of any physical observable other than the ground state energy then requires
not only a parameterization of the ket state |ψK〉 but also of the bra state
〈ψB |. The most straightforward parameterization, namely to take the bra
to be the adjoint of the ket, unfortunately leads to non-terminating, rather
involved, expressions for the observables in terms of the wavefunction pa-
rameters [82, 83]. Nevertheless,a tractable scheme can be obtained when
the bra is parameterized differently from the ket [82–84]. The parameteri-
zation suggested in 82, 84 is made in such a way that in the limiting case of
an untruncated scheme the conventional definition of an expectation value
〈A〉 = 〈ψ|A|ψ〉 is recovered from 〈ψB|A|ψK〉. But for any SUB(n) level, the
density-matrix calculated according to this scheme will be non-Hermitian.
Obviously this can under certain conditions invalidate the results of the
coupled-cluster dynamics just as the trace problem does in the case of the
QBBGKY-hierarchy. It should be noted that the QBBGKY-hierarchy does
not suffer from non-hermiticity, because the dynamic equations (10),(11)
manifestly preserve the hermiticity of the density-matrix.

V. CONTRACTION-FREE CORRELATION FUNCTIONS

In the last section we have seen that the standard formulations of the
many-body dynamics in terms of coupled-cluster wavefunctions as well as in
terms of the QBBGKY-hierarchy face some fundamental difficulties when
applied at a truncated level. Truncation, however, is a must for any method
that is meant to be useful for a description of large systems. In this sec-
tion we propose a modified truncation scheme for the QBBGKY-hierarchy
which avoids the above problems without significantly increasing the com-
putational cost. To that end we first have to briefly analyze what causes the
trace problem. According to (17) we find that contractions of higher order
correlation functions can be expressed in terms of lower order functions.
Basically this means that higher order functions contain not only addi-
tional information on the system not accessible by lower order functions,
but also to some extend information already contained in the lower order
functions. Neglecting higher order functions becomes inconsistent, because
the overlapping part of information is kept in one place and discarded in
an other. But as this overlapping part is readily contained in lower order
functions, it is in principle available via these functions and thus can be
used to define new correlation functions having this information removed.

One way to remove the information contained in contractions is to con-
struct contraction-free correlation (CFC) functions. To be more specific,
our goal is to express the correlation functions C̄abcd, C̄abcdef , · · · in the
QBBGKY-hierarchy in terms of new functionsKabcd,Kabcdef ,· · · having the
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following properties:

∑

j

Kajjb = 0 ,
∑

j

Kabjjcd = 0 , · · · ; (18)

Kabcd = −Kbacd = −Kabdc = Kbadc ,

Kabcdef = sign(P )KP (abc)def = sign(P )KabcP (def) , · · · ; (19)

Kabcd = K∗
dcba , Kabcdef = K∗

fedcba , · · · ; (20)

where P may be any permutation of the indices. One possibility to con-
struct these CFC functions is to subtract suitably anti-symmetrized diag-
onal functions from the original correlation functions C̄. Using (17) it is
easy to verify that for a system with N electrons and 2N spin orbitals, the
requirements (18)-(20) are fulfilled by the choice:

Kabcd ≡ C̄abcd −
1

(2N − 2)
A[δbc K̄ad] +

K̄ δ̄abcd

(2N − 2)(2N − 1)
,

Kabcdef ≡ C̄abcdef −
(1 − Pbc − Pac)(1 − Pde − Pdf )

(2N − 4)
×

×{δcd K̄abef −
K̃cd δ̄abef

(2N − 3)
} −

K̄(1 − Pde − Pdf ){δcd δ̄abef}

(2N − 4)(2N − 3)(2N − 2)
,

... , (21)

where

K̄ ≡
∑

j

K̄jj , K̃ab ≡
∑

j

K̄ajjb , δ̄abcd ≡ δbc δad − δac δbd . (22)

Here Pab is the operator interchanging the indices a and b. Inserting these
definitions into (10) and (11) we can reformulate the dynamics as a hi-
erarchy of equations of motion for the density-matrix Cab and the CFC
functions Kabcd,Kabcdef ,· · ·. A similar scheme that aims at retaining the
part of the six-point correlation function C̄abcdef that enters the trace re-
lation (17) has been proposed by Cassing and Pfitzner 81. Similar to (21),
also their scheme leads to corrections scaling like 1/N . But unlike our pro-
posal the ansatz presented in 81 violates (19). The respective truncated
scheme is consequently in conflict with the Pauli principle.

Using the definitions (21) and (22) we obtain

ih̄∂tCab =
∑

j

{tbj Caj − tja Cjb} −
∑

j

(Vbj − Vaj)Caj Cjb + φba Cab

+Wab + V̄ab K̄ab + eE (zb − za)Cab , (23)

ih̄∂tKabcd =
1

2
A[

∑

j

{tdj Kabcj − tja Kjbcd} + (Vcd − Vab)Cbc Cad]

−
1

2
A[

∑

j

(Vdj + Vcj − Vbj − Vaj) {Caj Kjbcd + Cjd Kabcj}]

+A[Cbc {Wabcd −
∑

j

(Vcj − Vbj)Caj Cjd +

+K̄ad (
V̄cb + V̄da + Vab − Vcd

N − 2
+ V̄cb)} + δbc {Fad + (Vcd − Vab)Gad}]
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+{(N − 1)(V̄cb + V̄da) + Vab − Vcd}
(Labcd − 2Kabcd)

N − 2
+(Vcd − Vab + φcd + φda + eE (zd + zc − zb − za))Kabcd

+
∑

j

(Vdj + Vcj − Vbj − Vaj)Kabjjcd , (24)

with the abbreviations

Labcd ≡
1

2
A[

∑

j

{Caj Kjbcd + Cjd Kabcj}] , Lad ≡
∑

j

Lajjd ,

Wabcd ≡
∑

j

(Vcj − Vbj)Kajjd , Wad ≡Waadd ,

W̄ad ≡
∑

j

{Caj (Wjd + V̄dj K̄jd) + Cjd (Waj + V̄ja K̄aj)} ,

W̄ ≡
∑

j

W̄jj , C̄ad ≡
∑

j

Caj K̄jd ,

V̄da ≡
1

N − 1

∑

j

(Vdj − Vaj) , φ̄ad ≡
∑

j

(Vaj − Vdj) K̄jj ,

Fad ≡ Cad{
φ̄da

2N − 4
−

K̄V̄da(N − 1)

(2N − 3)(N − 2)
} + C̄ad

2V̄da(N − 1)

(2N − 3)(N − 2)

+K̄ad{
φda

2(N − 1)(N − 2)
− V̄da(

N − 1

(N − 2)(2N − 3)
+

N

2(N − 1)(N − 2)
)}

+
1

2(N − 1)
{
∑

j

(Vaj −
Vdj − Vaj

N − 2
)K̄aj Cjd −

∑

j

(Vdj +
Vdj − Vaj

N − 2
)Caj K̄jd}

+
1

2(N − 1)
{
W̄ δad

(4N − 2)
− W̄ad −

N Wad

N − 2
} +

∑

j

(Vdj − Vaj)

2(N − 2)
Lajjd

−Lad

V̄da(N − 1)

(2N − 3)(N − 2)
,

Gab ≡
Cad K̄ − 2C̄ad + (2N − 2)K̄ad + Lad

(2N − 4)(2N − 3)
.

Truncation of the hierarchy of CFC functions at the SUB(2) level (i.e.
setting Kabcdef = 0 in (24)) leads to a closed set of equations of motion
for the density-matrix Cab and the correlation function Kabcd, given by
(23) and (24). Using these equations it can be directly verified that the
properties (18)-(20) are preserved also by the truncated dynamics. As
noted earlier, we can see from the definition (21) of the CFC functions
that the corrections needed to satisfy the trace relations scale at least as
1/N with system size. These terms can therefore be expected to gradually
become less important with growing system size.

In conclusion, we have shown how a modified version of the QBBGKY-
hierarchy can be applied to the optical response of many-electron systems.
Our main formal result is the set of equations (23) and (24). It allows a
size-consistent calculation of the optical response, taking into account two-
exciton contributions. Furthermore, the truncation is performed in a self-
consistent way, avoiding the problem of violated trace-relations exhibited
by the naive QBBGKY-truncation scheme.
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