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Abstract. We study the role of exchange contributions for the ultrafast carrier relaxation
in the quantum kinetic regime. The analysis is based on a density matrix approach where
besides the direct contributions to Coulomb scattering and screening in the random phase
approximation (RPA) also the corresponding exchange terms are included which are necessary
to satisfy the correct antisymmetry of the two-particle density matrix. At early times we
find significant deviations from the commonly used RPA where these exchange contributions
are neglected. At later times exchange contributions to scattering and screening tend to
compensate each other and the differences between RPA and the calculations including
exchange are reduced.

1. Introduction

The quantum kinetics of a gas of charged particles on ultrashort time scales has been a
very active research field in the past years first because the description of modern optical
experiments using pulses in the range of a few to a few tens of femtoseconds requires a
detailed modeling of the carrier dynamics and second because here fundamental phenomena
like memory effects, the energy-time uncertainty or the build-up of screening can be studied.
Indeed it has been found that at very early times the dynamics is well described by scattering
processes via an unscreened potential [1, 2] while with increasing time the screening is built
up [3, 4, 5] resulting in a reduced scattering efficiency. This build-up of the screening has
been studied in sophisticated quantum kinetic calculations based on fully time-dependent RPA
dielectric functions [4] and good agreement with experiments in the ultrafast regime has been
obtained [6, 7]. In these calculations, however, which are mostly based on a nonequlibrium
Green’s function approach exchange effects have been neglected because they correspond to
a different class of diagrams beyond RPA.

An alternative approach to quantum kinetic phenomena on ultrashort time scales is the
density matrix theory which has been extensively applied mainly to electron-phonon quantum
kinetics as well as to the Coulomb quantum kinetics in the low-density regime. It is well
known already since the early 1960s that also here, if two-particle correlations are included,
the full dynamical RPA screening of the scattering rates is obtained [8, 9, 10]. In recent years
several authors have addressed the treatment of screening in this formalism [11, 12, 13, 14],
however it has scarcely been applied to numerical investigations. Interestingly, in this
approach the exchange contributions appear in a natural way on the same level as the direct
contributions. In fact, it is obvious from the equations that they are necessary to obtain
two-particle density matrices which fulfill the correct Fermi antisymmetry. Exchange terms
modify both the scattering and the screening contributions to the dynamics of two-particle
correlations and it is the interplay between these two phenomena which is the focus of our
investigations. Exchange contributions to the carrier relaxation have been studied in terms of
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semiclassical scattering rates [15, 16, 17]. This approach, however, does not hold at ultrashort
times where quantum kinetic effects are important.

In this contribution we study the role of the quantum mechanical exchange for the
ultrafast relaxation of a two-dimensional electron gas due to Coulomb interaction processes
based on the density matrix theory. By selectively switching on and off the contributions
corresponding to RPA screening, exchange scattering, and exchange screening we can clearly
identify the role of these contributions for the relaxation dynamics. To concentrate on
the relaxation process we limit ourselves to a one-band model for a quasi-two-dimensional
electron gas where we analyze the dynamics of a given initial distribution.

2. Theory

We consider the standard model for a two-dimensional interacting electron gas. The material
parameters are taken for the conduction band of a GaAs quantum well. For this system the
Hamiltonian is given by

H = ∑
k;σ

εkc+kσckσ +
1
2 ∑

k;k0
;q;σ ;σ 0

Vq c+kσc+k0σ 0ck0+qσ 0ck�qσ : (1)

Here,c+kσ andckσ denote creation and annihilation operators for an electron with in-plane
momentumk and spin indexσ , εk is the free carrier dispersion relation assumed to be
parabolic andVq is the Coulomb matrix element screened only by the background dielectric
constant. In a density matrix approach Coulomb scattering and screening is described by
a coupled set of equations for the one-particle density matrix (single particle distribution
function) f σ

k and the two-particle density matrixKσσ 0σ 0σ
k k0 k0+q k�q defined as

f σ
k := hc+kσckσi; (2)

Kσσ 0σ 0σ
k k0 k0+q k�q := hc+kσc+k0σ 0ck0+qσ 0ck�qσ i; (3)

respectively. In the spirit of the correlation expansion it is useful to define a correlation
functionK̄ by subtracting from the two-particle density matrixK its mean-field part. Here we
concentrate on spin-independent distributionsfk as generated, e.g., by unpolarized or linearly
polarized light pulses which allows us to define

K̄k;k0
;q :=∑

σ 0

Kσσ 0σ 0σ
k k0 k0+q k�q+ fk fk�qδk;k0+q: (4)

As is typical for a many-body problem, by using the Heisenberg equations of motion for the
creation and annihilation operators an infinite hierarchy of equations for higher order density
matrices is obtained which, in the present case, represents the quantum BBGKY hierarchy. A
common approximation to truncate this hierarchy is to neglect any three-particle correlations
which results in a closed set of equations forfk andK̄ [10, 11, 12, 13, 14]. The remaining
terms can be interpreted on physical grounds [10]. By keeping all terms relevant for a fully
dynamical treatment of scattering and screening and satisfying at the same time the correct
antisymmetry of the two-particle density matrix, the resulting set of equations of motion reads

ih̄
d
dt

fk = 2i ∑
k0

;q
Vq Im

n
K̄k;k0

;q

o
; (5)

ih̄
d
dt

K̄k;k0
;q =

�
Ek�q+Ek0+q�Ek0 �Ek

�
K̄k;k0

;q (6)

+2Vq

h
fk fk0

�
1� fk0+q

��
1� fk�q

�
� fk�q fk0+q

�
1� fk0

��
1� fk

�i
(7)
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+2Vq

h�
fk� fk�q

�
∑
k00

K̄k00
;k0

;q+

�
fk0 � fk0+q

�
∑
k00

K̄k;k00
;q

i
(9)

�Vk0
�k+q

h�
fk� fk0+q

�
∑
k00

K̄k00
;k0

;k�k0
�q

+

�
fk0 � fk�q

�
∑
k00

K̄k;k00
;k�k0

�q

i
; (10)

where we have introduced the energies renormalized by the exchange energy according to
Ek := εk�∑qVq fk�q. The dynamical variables are directly related to the system energies. By
introducing the mean kinetic, exchange, and correlation energy per particle as

Ekin := 2n�1∑
k

εk fk ; (11)

Eex := �n�1∑
k;q

Vq fk fk�q ; (12)

Ecorr := n�1 ∑
k;k0

;q
VqK̄k;k0

;q ; (13)

respectively, the total energy is given byhHi = n(Ekin + Eex+Ecorr) with the densityn =
2∑k fk.

From Eq. (6) - (10) two well-known approximations can be derived: TheBorn
approximation (BA) which describes scattering by the bare potential is obtained by retaining
only parts (6) and (7). Therandom phase approximation (RPA) consists in keeping the terms
(6), (7), and (9) [10, 14]. It accounts for scattering by a dynamically screened potential.
Obviously the terms (8) and (10) describe exchange corrections to the terms (7) and (9),
respectively, which are necessary to satisfy the correct antisymmetry of the two-particle
density matrix upon exchange of the final or initial states. This antisymmetry is violated in the
cases BA and RPA. We will discuss the role of exchange contributions for the dynamics by
comparing BA and RPA results with calculations comprising the respective exchange terms
denoted by BAX [parts (6) - (8)] and RPAX [parts (6) - (10)].

According to Eqs. (5) - (10) relaxation can be identified as a two step process: first, the
correlation is built up from the distribution function and, second, the distribution function
changes due to the feedback from the correlation. The screening terms, on the other hand,
already require the existence of a correlation. This is the reason for the retarded build-up of
screening. The screening at a given timet does not only depend on the distribution function
at the same time but also on its history; screening much like scattering is a non-Markovian
process in a quantum kinetic treatment.

To clearly identify this build-up of screening we will compare the results of the four levels
of the theory introduced above with the case where the fully dynamical and non-Markovian
treatment of the screening is replaced by a statically screened Coulomb potential in the Born
approximation. Here, the screening is described by the usual Lindhard dielectric function in
the static limit,

ε(q;ω= 0) = 1�Vq ∑
k;σ

f σ
k � f σ

k�q

εk� εk�q
: (14)

This level of the theory will be denoted by BAL. A particular feature in the present case
of a two-dimensional electron gas is the fact that in the long-wavelength limit the Lindhard
screening only depends on the distribution function at the band minimumf k=0. We will come
back to this point below when discussing the results.
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Figure 1. Electron distribution function as a function of the kinetic energy and time for four
different levels of the theory as explained in the text. The initial distribution is centered at an
excess energy of 10 meV with a width of 15 meV, the density is 7:6�1011 cm�2.

3. Results

We apply the theory to the case of the relaxation of a given initial distribution which is
assumed to be uncorrelated. The initial distribution is taken to be Gaussian in energy which
mimics a carrier distribution generated by an ultrashort laser pulse. Figure 1 displays the
relaxation dynamics of an initial distribution centered at an excess energy of 10 meV with
a width of 15 meV corresponding to a density of 7:6�1011 cm�2. In the case of the Born
approximation (BA) we find a very fast dynamics associated even with a strong oscillatory
contribution in particular at the bottom of the band. The relaxation is somewhat reduced
and the oscillations are less pronounced if, in addition to the direct scattering terms, also the
exchange terms are included (BAX). If, on the other hand, screening is taken into account
on the level of the random phase approximation (RPA) the slowing down of the relaxation
dynamics is much more pronounced and the oscillations are almost gone. Also in this case
adding exchange contributions (RPAX) leads again to a further reduction of the relaxation.

In all cases the initial non-equilibrium distribution relaxes towards a Fermi-like
distribution. As is clearly seen in the figure the effective temperatures of the distribution
functions at later times are very different in the four cases. BA corresponds to the highest
temperature, in BAX it is slightly reduced and in the two cases including screening (RPA and
RPAX) the temperatures are much smaller than in the previous cases. The physical reason for
this different behavior is the strongly different degree of correlations. Being a conservative
system, the sum of the three energies introduced in Eqs. (11)-(13) is constant. The exchange
energy turns out to be approximately the same in all four cases. The absolute value of the
correlation energy, however, is much bigger in the cases without screening (BA and BAX)
than in those with screening (RPA and RPAX) because in the latter cases the interaction
strength is effectively reduced. Since the correlation energy is negative, this implies also a
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Figure 2. Temporal evolution of the electron distribution function at the minimum of the
band (upper part) and at the maximum of the initial distribution (lower part) for the five cases
explained in the text. The initial distributions are centered at an excess energy of 10 meV with
a width of 15 meV, the density is 7:6� 1011 cm�2 (left column) and 5� 1011 cm�2 (right
column).

much bigger kinetic energy in the cases without screening and, thus, an increased effective
temperature.

To obtain a more quantitative picture of the relaxation dynamics, in Fig. 2 we have plotted
the temporal evolution of the electron distribution at two specific values ofk, namely at the
bottom of the band (upper part) and at the maximum of the initial distribution (lower part).
The left column refers to the same initial condition as discussed previously while the right
column refers to a reduced density of 5� 1011 cm�2. Besides the four levels of the theory
discussed above, here we have also included the Born approximation with a static Lindhard
screening (BAL). The main features are the same at both densities. As can be expected the
dynamics is faster in the case of the higher density. In particular the oscillatory behavior at
the band minimum in the cases without screening is much more pronounced at the higher
density. It turns out that a further lowering of the density results in a complete loss of these
oscillations.

Let us now come to a detailed comparison of the dynamics in the five cases studied.
A comparison of BA with BAX reveals that the exchange scattering contribution (8) leads
to a pronounced reduction of the scattering efficiency especially at early times due to the
opposite signs of direct and exchange terms. Since scattering processes are effective just from
the beginning the corresponding curves separate from each other immediately and already at
25 fs noticeable differences are seen.

At very early times RPA and RPAX coincide with BA and BAX, respectively. Then,
however, the screening builds up and the relaxation of the distribution function dramatically
decreases. After about 40-50 fs at the higher density and 50-70 fs at the lower density this
reduction due to screening starts to dominate over the reduction by the exchange scattering
term (8) as can be seen from the crossing of the curves BAX and RPA in Fig. 2. When
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Figure 3. Temporal evolution of the electron distribution function at the minimum of the
band (upper part) and at the maximum of the initial distribution (lower part) for the five cases
explained in the text. The initial distribution is centered at an excess energy of 50 meV with a
width of 15 meV, the density is 5�1011 cm�2.

comparing RPAX with RPA we find at early times essentially the same reduction of the
relaxation due to the exchange contribution as in the case without screening. At later times
(about 120 fs for the higher density and about 150 fs for the lower density) the time evolutions
of the distribution functions obtained by RPA and RPAX become more or less parallel. This
can be interpreted as a mutual cancellation of the exchange contributions (8) and (10). Thus,
at later times the dynamics is well described by the commonly used RPA.

By completely neglecting the retarded build-up of screening, the statically screened
model (BAL) strongly overestimates the screening and consequently underestimates the
relaxation at short times. For both densities the corresponding curves exhibit a much slower
temporal evolution at early times than the other four cases. However, at later times of the
order of 200 fs BAL leads to similar results as RPA/RPAX which means that the dynamics
can now be described quite well by a non-retarded screening model and obviously also the
static limit of the Lindhard dielectric function provides a good approximation.

The situation, however, changes if the initial distribution is characterized by a higher
excess energy. This is clearly seen in Fig. 3 where the temporal evolution of the electron
distribution function at the bottom of the band and at the maximum of the initial distribution
is shown for an excess energy of 50 meV. The general features discussed above for the cases
BA/BAX and RPA/RPAX remain the same. Also here, initially RPA coincides with BA and
RPAX coincides with BAX demonstrating the retarded build-up of screening and again the
relaxation is reduced by the exchange contributions. The static Lindhard screening (BAL),
however, now strongly underestimates the screening in contrast to the previous cases where we
have found an overestimation of the screening. The reason for this different behavior is the fact
that, as mentioned above, the long-wavelength limit of the static screening, which is the most
important part, in a two-dimensional electron gas only depends on the distribution function at
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the band minimum. In the present case of an excess energy of 50 meV and a width of 15 meV
the occupation atk = 0 vanishes initially and, therefore, there is no screening. Indeed, up
to about 50 fs the BAL curves coincide with the BA curves and only after the creation of
a noticeable occupation at this point screening reduces the relaxation and the curves start to
separate. This overestimation of scattering rates by static screening is in qualitative agreement
with previous findings where, for a three-dimensional electron gas and in the Boltzmann limit,
scattering rates including static and dynamical screening have been calculated for the case of
strongly athermal electron distributions [18].

4. Conclusions

In this contribution we have shown that on an ultrashort time scale the inclusion of quantum
mechanical exchange terms results in a significant reduction of the scattering efficiency when
compared to the case of direct interaction only. With increasing time the screening of the bare
Coulomb interaction builds up, but also the screening is reduced by exchange contributions.
When the screening has built up, the exchange contributions to scattering and screening tend
to compensate each other and the subsequent relaxation dynamics is in good agreement with
the standard RPA case. For excess energies which are sufficiently low such that states at
the band minimum are occupied the relaxation dynamics at later times can satisfactorily be
described in terms of a static screening model while for higher excess energies the static limit
of the Lindhard dielectric function strongly underestimates the screening.
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Quantum Optoelectronics of the European Commission.
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