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Abstract. A comprehensive analysis of the effect of pure dephasing processes on the linear
as well as the nonlinear optical response of quantum dots is presented. The focus is on small
dots where it is permissible to consider only the lowest energy states. It turns out that pure
dephasing can be studied analytically in this limit. The analysis is based on exact closed form
expressions for the linear susceptibility as well as for the nonlinear response to a sequence
of delta pulses. The dependences of linear absorption spectra on statically applied fields and
on the temperature for different dot sizes are discussed. Exact results are compared with
calculations based on the correlation expansion. Four-Wave-Mixing spectra are presented
for different temperatures and strength of the inhomogeneous broadening. Good qualitative
agreement with experiments is found.

1. Introduction

In systems like quantum dots where carriers can only occupy discrete energy levels real
phonon emission or absorption processes which do conserve the single particle energies
are rather unlikely. This phenomenon is known as phonon bottleneck [1]. The coupling to
phonons is, however, still a major source for the decoherence of the optical polarization.
Here, the parts of the electron-phonon coupling that do not change the electronic occupation
numbers play a crucial role. Their contribution is customarily called pure dephasing and it
is known to be of particular importance in small quantum dots and at elevated temperatures
[2, 3, 4, 5]. For many applications of quantum dots as parts of optoelectronic devices [6]
a good knowledge of the dephasing is required. This is particularly true if semiconductor
quantum dots should be used as basic building blocks for quantum information processing
[7, 8, 9] where the operation crucially relies on the presence of coherence.

In the present paper we study the impact of pure dephasing on the linear and non-linear
response of small quantum dots. Our analysis is devoted to a situation where the separation
of electronic energies is large enough such that a selective excitation is possible even with
pulses that are short on the time scale of relevant phonon periods. In this case we can focus
on the two electronic states that are resonantly coupled by the optical laser field. After the
energy selection has been accounted for by concentrating on only two electronic levels we
can exploit that our pulses are assumed to be short compared with the remaining relevant
time scales set by the phonon energies and go over to the limit of delta pulses. For this limit
we shall present general solutions of our dynamical equations that are non-perturbative with
respect to both the coupling to phonons and to the laser light. From our general formulas
we calculate linear and four-wave-mixing (FWM) spectra and discuss influences of various
quantities such as temperature, dot size and applied static fields. In order to demonstrate the
role of multi-phonon contributions we also compare our results with calculations based on the
first order correlation expansion which accounts only for single phonon processes.
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2. Definition of the model

The starting point for our analysis is the following Hamiltonian of a two level model coupled
to phonons and laser light

H � h̄Ωc†c � �
MEc†d† � M � E � dc � � ∑

ξ
h̄ωξ b†

ξ bξ

� ∑
ξ

h̄��� ge
ξ bξ

� ge �ξ b†
ξ 	 c†c �
� gh

ξ bξ
� gh �ξ b†

ξ 	 d†d �
� (1)

where c � d � bξ are the destruction operators for electrons, holes, and phonons, respectively, and

c† � d† � b†
ξ are the corresponding creation operators. ge � h

ξ
are phonon coupling constants, where

the index ξ � � j � q 	 comprises a phonon wave vector q and a branch index j � LO � LA � TA
for longitudinal optical (LO) or acoustic (LA) phonons or transverse acoustic (TA) modes,
respectively. M is the component of the dipole matrix element in direction of the laser field
polarization and E � t 	 stands for the amplitude of the laser field. Finally, Ω is the energy of
an electron occupying a conduction band dot state. We have chosen the energy of the hole to
define the zero of energy.

While the general formulas that shall be presented in the next section are valid for
arbitrary electron and hole wave functions as well as arbitrary phonon dispersions or
dependences of the carrier phonon coupling on the phonon modes for a specific evaluation
of these formulas these quantities have, of course, to be specified. The numerical results of
this paper have been obtained by considering a confinement potential for electron and holes
given by an infinite barrier in the z (vertical) direction and a parabolic potential in the x � y
(lateral) plane. We use standard GaAs parameters (explicitly given e.g. in Ref. [5]). The same
potential shape is taken for electrons and holes, resulting with GaAs parameters in a lateral
extension of the hole wave function which is by a factor of � me � mh 	�� 1 � 4 ��� 0 � 87 smaller than
the electron wave function. The vertical size of the dot is given by the well width while we
defined the lateral size as the radius where the electron density is reduced to half its maximum
value. We shall consider here only the case of equal lateral and vertical sizes.

Concerning the phonon modes we consider a situation where the lattice properties of the
dot are not significantly different from the environment such that the phonons can be described
as bulk phonons. For bulk phonons the carrier-phonon couplings ge � h �ξ

can be written in the

form

ge � h �ξ
� Ψe � h � � q 	 Ge � h �ξ

with Ψe � h � � q 	 ���
V ���

ψe � h � � r 	 ���
2

eirqd3r � (2)

where the form factor Ψe � h � � q 	 has been expressed in terms of the wave functions ψe � h � � r 	 and

Ge � h �ξ
is the bulk coupling matrix element. We consider three different types of carrier-phonon

coupling: the polar optical coupling to LO phonons, deformation potential coupling to LA
phonons, and the piezo-electric coupling to LA and TA phonons. For the corresponding bulk
coupling matrix elements standard literature expressions have been taken [10, 5].

The dispersion of the phonon branches is modeled by taking the shape of the dispersion
relation of the standard diatomic linear chain model adjusted to the GaAs phonon dispersion
relation reported in the literature [11]. Isotropic phonon dispersions have been assumed for
all branches. The phonon dispersions obtained in this way are shown in Fig. 1 together with
the angular integrated effective form factors

Ψe f f � q 	 : � � 2π

0
dϕ � π

0
dθ sin � θ 	��Ψe

q � Ψh
q � 2 (3)
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Figure 1. Dispersion relations of the LO, LA, and TA phonons and normalized effective form
factors [see Eq. (3)].

that correspond to different dot sizes. This effective form factor directly determines the
region in the phonon q-space to which the dot is effectively coupled by the polar interaction
mechanisms. For the deformation potential coupling a somewhat different quantity should
appear in the integral because electrons and holes couple to LA phonons by different
deformation potentials. Nevertheless, Eq. (3) provides a good estimate of the range of relevant
q-values also in this case. The general tendency is that the form factors extend to higher
q-values with decreasing sizes of the dots. From Fig. 1 it is seen that even for dot sizes
of about 3 nm the deviations from a constant LO phonon frequency only start to become
noticeable. Acoustic phonons provide a continuum of energies. Down to the smallest dots
studied here Fig. 1 shows that the dispersion of both longitudinal and transverse acoustic
phonons is essentially linear. For acoustic phonons the increased relevant range of phonon
frequencies with decreasing dot size leads to an effectively increasing width of the coupled
continuum.

3. Exact results for the dynamics of generating functions

A convenient way to represent the dynamics of the system is to follow the time evolution of
generating functions for phonon assisted density matrices which are defined as

Y � αξ � t 	 �
�

d c e � ∑ξ α �ξ b†
ξ e∑ξ αξ bξ � �

C � αξ � t 	 �
�

c†c e � ∑ξ α �ξ b†
ξ e∑ξ αξ bξ � �

F � αξ � t 	 �
�

e � ∑ξ α � ξ b†
ξ e∑ξ αξ bξ � �

For each phonon mode we have introduced a complex valued parameter αξ and the brackets
denote the quantum mechanical ensemble averaging over electronic and phononic degrees
of freedom. These generating functions provide a complete description of the system in the
sense that all elements of the electronic and phononic density matrix including all possible
electronic and phononic correlation functions can be obtained from Y � C � F . For example,
the optical polarization P which is most important for optical experiments can be expressed
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Figure 2. Linear absorption spectra for a 6 nm (left) and a 3 nm (right) quantum dot at different
temperatures.

directly in terms of the transition density Y in the form

P � t 	 � M � Y � αξ � t 	 � αξ
� 0 � (4)

Similarly, the occupation of the upper dot level
�
c†c � is given by the values of C � αξ � t 	 at

αξ
� 0.

The equations of motion for the generating functions Y � C � F follow directly from the
Heisenberg equations for the corresponding operators and have been derived explicitely
without invoking any further approximations in Ref. [12]. The most important feature of
these equations is that they form a closed set of equations of motion which is an exact and
complete representation of the dynamics of our model. Therefore, formulating the dynamics
in terms of generating functions avoids the hierarchy problem which is usually encountered
when the dynamics is represented in terms of phonon assisted density matrices which are
coupled in an infinite hierarchy of equations.

To complete the definition of the dynamical problem one has to specify initial conditions.
Here, we shall assume that before the arrival of any light pulse the dot is in its electronic
ground state and that the phonon system is in thermal equilibrium at temperature T . This
provides for the following initial conditions for the above defined generating functions

Y � 0 � C � 0 � F � e � ∑ξ � αξ � 2Nξ � (5)

where Nξ
� � exp

�
h̄ωξ
kBT � � 1 � � 1

is the thermal distribution of the phonons at temperature T .

In Ref. [12] exact solutions of the coupled equations for Y � C and F have been constructed
for an excitation with an arbitrary sequence of delta pulses. Especially compact is the result
for a single pulse of the form ME

h̄
� A

2 eiϕ δ � t 	 , where A denotes the pulse area and ϕ is a
phase. In this case the solutions read

Y � αξ � t 	 � iθ � t 	
2

sin � A 	� exp � � iΩt � iϕ � ∑
ξ � γ �ξ � αξ

� γξ 	 � e � iωξ t � 1 	 � Nξ � � αξ
� γξ 	 e � iωξ t � γξ � 2 � 	 (6)
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Figure 3. Linear absorption spectra for a 3 nm quantum dot: correlation expansion accounting
only for single phonon processes (left), exact results (right). The upper parts are obtained
keeping only the deformation potential coupling to LA phonons while all couplings to all
phonon modes are accounted for in the lower parts.

C � αξ � t 	 � θ � t 	 sin2 � A
2 	 exp � ∑

ξ
2iIm � γ �ξ αξ

�
e � iωξ t � 1 � � � Nξ �αξ � 2 	 (7)

F � αξ � t 	 � exp � � ∑
ξ

Nξ �αξ � 2 	
�

1 � θ � t 	 sin2 � A
2 	 � exp � 2iIm � ∑

ξ
γ �ξ αξ � e � iωξ t � 1 	 � 	 � 1 ��� (8)

with γξ
� ge

ξ � gh
ξ

ωξ
and Ω � Ω � ∑ξ ���

γξ ���
2

ωξ . Clearly seen is the oscillatory dependence of all

components as a function of the pulse area A, which is a manifestation of the Rabi oscillation
phenomenon.

4. Linear response

In this section we shall investigated the linear response of our model. A particular focus will
be the discussion of linear spectra. Due to their definition, linear spectra are proportional
to the imaginary part of the Fourier transform of the polarization induced by a delta pulse.
Thus, using delta pulse excitations in our calculations does not limit the results of the present
section. Furthermore, the spectra are easily obtained by using Eqs. (4) and (6). In numerically
performing the Fourier transform some care has to be taken, because the polarization does
not decay to zero for t � ∞ (see e.g. [5]). Thus, before taking the Fourier transform we
have muliplied the polarization with a factor e � t � t0 with t0

� 500 ps. This procedure may be
interpreted as a phenomenological way to account for the radiative lifetime.

In Fig. 2 linear spectra are plotted for two different dot sizes [6 nm (left), 3 nm (right)]
and two different temperatures [4 K (top), 300 K (bottom)]. The spectrum consist in all
cases of a narrow zero phonon line broadend only by the radiative lifetime superimposed on
a broad non-Lorentzian background provided by acoustic phonons. This pattern is repeated
at the positions of the LO phonon sidebands. Recent FWM measurements revealed that the
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Figure 4. Optical polarizations induced by a δ -pulse for a 6 nm quantum dot interacting with
phonons via piezo-electric (a),(b), and deformation potential (c),(d) interaction in the presence
of a static vertical (left) and lateral (right) electric field at a temperature of 77 K.

limit of radiative broadening of the zero phonon line is indeed experimentally accessible at
low temperatures [13]; at elevated temperatures the zero phonon line exhibits an additional
broadening which is not accounted for by the pure dephasing processes covered in our model.
Nevertheless, the temperature dependence of the width of the broad backgound is in good
agreement with measurements. With rising temperature the strength of the contribution of the
zero phonon line clearly decreases relative to the background such that at room temperature
the spectra are dominated by the effects of pure dephasing. It is also seen that the lineshapes
develop from a strongly asymmetric shape at low temperatures into a highly symmetric form
at room temperature, which, however, is still not well represented by a Lorentzian. Finally,
the spectra of the 3 nm dot are significantly broader than those of the 6 nm dot, because due
to the changes on the form factors a wider part of the continuum is effectively coupled in the
former case (see Fig. 3).

In order to clarify the role of multi-phonon processes we have performed calculations
using the first order correlation expansion [14]. On this level of theory one accounts for
single phonon processes while multi-phonon contributions are neglected. The so obtained
approximate spectra are compared with exact results in Fig. 3. The upper parts of the
figure show results where only the deformation potential has been accounted for, while in
the lower parts all contributions have been included. It is obvious from the figure that the
correlation expansion reproduces the width of the full calculation only at low temperatures;
at elevated temperatures multi-phonon processes are important and contribute significantly to
the broadening. Furthermore, it is seen that the approximate spectra exhibit sharp structures
which are absent in the exact result. These structures correspond to energies where a linear
absorption with the assistence of only a single phonon is suppresed by unfavorable form
factors. The full theory does not show these features, because multi-phonon contributions
compensate the suppression. Interestingly, the approximate calculation yields a LO phonon
sideband without a broad background. This can be understood from the fact that one LO
phonon is needed to produce the sideband and the backgound is then produced by additional
acoustic phonon couplings. It is therefore a multi-phonon effect where a LO phonon and
further acoustic phonons are involved.
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Figure 5. FWM spectra as defined in the text for infinitely strong inhomogeneous broadening
at different temperatures (left) and for different width σ of the inhomogegeous broadening
(right).

Fig. 4 displays the linear polarization after a delta pulse excitation as a function of time
for different additional static fields, which can be applied either vertically (left) or laterally
(right). The upper parts are obtained by retaining only the piezo-electric coupling while in the
lower parts only the deformation potential coupling has been accounted for. The general trend
is that a stronger decoherence is observed for stronger fields. The effect is less pronounced for
vertical fields, because here the charge separation induced by the field is limited by the infinite
barriers at the boundaries of the dot. The most interesting aspect is, however, that the piezo-
electric coupling which is negligible at low fields may become a decoherence mechanism
comparable with the deformation potential coupling when strong fields are applied.

5. Nonlinear spectra

From the general results obtained in Ref. [12] it is easy to derive various nonlinear signals.
Here, we shall present results on FWM spectra. We consider a two-pulse FWM setup where
a first pulse arives at t � � τ while a second pulse hits the dot at t � 0. The FWM signal
corresponds to the polarization component proportional to ei � 2ϕ2 � ϕ1 	 where ϕ1 � ϕ2 are the
phases of the two pulses. Denoting the respective pulse areas by A1 and A2 the FWM signal
of a single dot is given by

PFW M � t � τ 	 � � iM � θ � t 	 θ � τ 	
2

sin2 � A2

2 	 sin � A1 	� ei
�
2ϕ2 � ϕ1 � Ω̄ � t � τ ����� ∑ξ � γξ � 2 �

2cos � ωξ t � � 3 � e
iωξ τ � 2 � e

iωξ t � � Nξ � eiωξ τ � 2 � e
iωξ t � � 1 � 2 � � (9)

Recently, corresponding measurements have been performed on an ensemble of dots by using
a heterodyne detection technique [13] where the measured signal is proportional to PFW M � t � τ 	
averaged over the ensemble. FWM spectra have been extracted in Ref. [13] by taking the
time integral of the absolute value of this quantity and performing the Fourier transform
with respect to the delay time. Corresponding spectra derived from Eq. (9) are shown in
Fig. 5. The left part of the figure displays curves for different temperatures calculated with
infinitely strong inhomogenoeous broadening. The spectral shapes for 10 and 100 K are
nearly Gaussian and agree qualitatively well with the corresponding measurments Ref. [13].
At extremely low temperatures of the order of � 1 K our theory predicts a dip in the lineshape.
The lowest temperature for which spectra are reported in Ref. [13] was 50 K. Thus, it is not
yet decided whether this can be measured or whether it is suppressed by other mechanisms.



Pure dephasing in the linear and nonlinear optical response of quantum dots 8

The right part of Fig. 5 shows spectra at 1 K for different values of the width of the
inhomogeneous broadening of the ensemble. Interestingly, the dip is more pronounced for
stronger inhomogeneous broadening.

6. Conclusions

We have analysed the linear and non-linear response of strongly confined quantum dots by
using a generating function approach. Our theory allows for exact solutions for delta pulse
excitations. The results are non-perturbative with respect to phonon and light couplings. The
spectra obtained in this way exhibit characteristic lineshapes which deviate strongly from
a Lorentzian form. Typical spectra consist of a sharp zero phonon line superimposed on a
broad background due to acoustic phonons. Lateral or vertical electric fields primarily affect
the polar interaction mechanisms which are more efficient due to the separation of charges
in static fields. In particular, the piezo-electric coupling may become a relevant decoherence
mechanism at high fields. The deformation potential interaction is only weakly influenced
by static fields. By comparing exact spectra with results accounting only for single phonon
processes we have identified the role of multi-phonon contributions. At elevated temperatures
multi-phonon effects are found to contribute significantly to the broadening of the spectra.

In addition we have presented an analysis of FWM spectra. We have shown that in-
homogeneous broadening can affect the form of these spectra particularly at low tempera-
tures. Similar to the linear case also the FWM spectra consist of a broad background supple-
mented by a sharp line. The resulting FWM spectra are in good agreement with corresponding
experiments[13].
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