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Complementary Data

Sample structure

For the study of temperature dependent entanglement, GaAs quantum dots (QDs) grown

by the local droplet etching method are used. The structure of the sample is shown in

Figure 1. An (001)-oriented GaAs substrate is overgrown by a 475-nm-thick buffer layer,

followed by nine pairs of alternating Al0.95Ga0.05As/Al0.20Ga0.80As layers with a thickness

of 69 nm/60 nm respectively, forming a distributed Bragg reflector. Next, a single 65 nm

thick layer of Al0.33Ga0.67As that hosts the droplet etched nanoholes is grown. By filling the

nanoholes via deposition of 1.1 nm of GaAs followed by a 30 s annealing step the QDs are

obtained, which are overgrown by another layer of Al0.33Ga0.67As with 59 nm and a layer of

60 nm Al0.2Ga0.8As. The cavity is completed by two pairs of Al0.95Ga0.05As/Al0.20Ga0.80As

layers and a 4 nm GaAs cap. In the following, the sample is lapped down to ∼ 30 µm and
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Figure 1: Structure of the sample used for temperature dependent entanglement measure-
ments.

bonded with SU-8 resist to a 200 µm thick [Pb(Mg1/3Nb2/3)O3]0.72− [PbTiO3]0.28 (PMN-PT)

piezo featuring six micro-machined legs in order to apply three independent quasi-uniaxial

stresses through Cr/Au contacts.1,2 Figure 2 shows the above-band spectra of a representative

QD at low temperature and the tunability of the fine-structure splitting (FSS) by applying
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voltages to the so-called six leg device. The device is mounted and contacted in a He

bath cryostat ensuring stable temperatures during measurement. For the optical excitation

and collection of the PL signal an aspheric lens was used. For the temperature-dependent

measurements presented in the main paper, two-photon resonant excitation (TPE) was used.

The FSS was then determined by performing linear-polarization-resolved PL measurements

of the exciton (X) and the biexciton (XX) lines, with an uncertainty of 0.2 µeV. At each

temperature the FSS was found to change by 0.5 µeV−1 µeV, most probably because of strain

changes due to variations in the piezoelectric coefficients of the strain actuator3 and the

mismatch in thermal expansion coefficients of the piezoelectric and semiconductor material.
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Figure 2: (a) Representative spectrum under above-band excitation at around 5K of a
GaAs QD of the sample in Figure 1. The exciton line is marked with “X”. (b) The excellent
tunability of fine-structure splitting (FSS) of about 5 µeV within ±100V in this sample
is shown for each of the three leg pairs with applied voltages (grey, red, and blue). By
combining different strain axes (green line) the FSS can be tuned to the resolution limit.
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Auto-correlation measurements

Figure 3 shows the values of the second-order auto-correlation function at zero time-delay

[g(2)(0)] for biexciton (XX) and exciton (X) at temperatures up to 64.4K.
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Figure 3: g(2)(0) values for biexciton XX and exciton X for temperatures up to 64.4K for a
time bin of ∆t = 2ns.

Decay dynamics

Lifetime of biexciton and exciton at 4.4 K

The extraction of biexciton XX and exciton X lifetime at 4.4K is done by performing a

convolutional fit (see Figure 4) that takes the instrument response function (IRF) into ac-

count. The biexciton decay was fitted with a monoexponential function, the exciton decay

with a double exponential, resulting in a lifetime of XX of 129(3) ps and in an X lifetime of

231(4) ps.
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Figure 4: Evaluation of decay traces of biexciton XX and exciton X at 4.4K by performing
a convolutional fit with the instrument response function IRF (inset).

Rate equations

For the presented model [see Figure 2(b) in the main paper], the occupation of the states

can be calculated by setting up the rate equation system given by:


ṅXX∗

ṅXX

ṅX∗

ṅX

ṅXD

 =
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−γXX∗

1
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2
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D
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γXX∗
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0 −γX∗ − γPH − 2γPHD
4γ∗
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PHD

γXX∗
1

γXX γPH −γX − 4γ∗
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γXX∗
D

0 2γPHD
0 −4γ∗

PHD
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

nXX∗

nXX

nX∗

nX

nXD

 (1)

where n is the probability of occupation of the given states. The dot indicates the time

derivative. The rates γ correspond to the rates given in the main text. Due to resonant

two-photon excitation the system is prepared in the |XX⟩ state, which is defined by the
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following initial conditions:

nXX∗ [t = 0] = 0,

nXX [t = 0] = 1,

nX∗ [t = 0] = 0,

nX [t = 0] = 0,

nXD
[t = 0] = 0. (2)

By solving the rate equations and using the rates in Table 1 of the main text, one obtains

the decay traces shown in Figure 2(a) of the main paper. The slope and the slow decay of X

is dominated by the slow phonon-assisted rates γ∗
PH and γ∗

PH2 of the system and the state

multiplicity of 4 for |X∗⟩ and |XX∗⟩ as long as γX∗ is slower than γX decay.

Having a closer look to the XX decay (Figure 2(a) of the main paper), we see that in the

simulation no crossing of high and low temperature decay curves is visible compared to the

measurement. We attribute this to the fact that we were not able to explicitly determine the

energy distance |XX∗⟩ − |XX⟩. Therefore, the same energy separation (3.7meV) as for the

|X∗⟩-|X⟩ splitting was assumed. By using a smaller |XX∗⟩ − |XX⟩ energy of, e.g., 1.4meV

the presented model can reproduce the crossing of the X decay curves as shown in Figure 5.

However, the smaller energy separation is also affecting the X decay resulting in a much

slower decay for lower temperatures than observed in the measurement. On the contrary,

the predicted X decay as it is shown in Figure 2(a) of the main paper is faster at higher

temperatures than in the measurement, which can be attributed to further excited states

appearing at high temperatures (X∗∗ and X∗∗∗) that were not considered in the model (see

section “Further excited states”).
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Figure 5: Simulated decay dynamics of XX and X decay with a modified |XX∗⟩ − |XX⟩
energy distance of 1.4meV. Note the different time scales for XX and X. For the XX decay
a crossing of high and low temperature decays is visible at around 0.6 ns.

Populating the excited exciton X∗

The |X∗⟩ is an excited state of the neutral exciton. In a single particle picture, it consists of

an s-shell electron and a p-shell hole, which produce a spectral line labeled X∗ upon radiative

recombination. By preparing the system in the |X∗⟩ state via resonant excitation one can

measure the exciton decay and compare it with the calculated occupation from the rate

equations with the parameters given in the main paper. For this measurement a charge-

tunable diode sample with comparable GaAs QDs was used. Figure 6 shows the simulated

decay curve of X convolved with a measured IRF in red at 5K by using the same rates as given

in the main paper. The measured exciton decay is shown in dark red. A good match between

model and experiment is found, considering that a different QD was measured here compared

to the one used to develop the rate equation model. Further, measurements with populated

|X∗⟩ show equal intensities of XV and XH (vertically and horizontally polarized excitonic

emission) regardless of laser polarization, confirming the loss of polarization information,

which is linked to the spin properties of the involved states.
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Figure 6: Exciton decay measured by preparing the system initially in the excited |X∗⟩ state
with a laser pulse tuned to the X∗ line. The measured decay on a comparable sample is
shown in dark red, the simulated decay is shown in light red. The simulation considers the
convolution with the instrument response function.

Concurrence

In order to determine the photonic density matrix and the degree of entanglement between

X and XX, a tomographically complete set of 16 cross-correlation measurements correspond-

ing to different polarization configurations according to Ref. 4 was performed. The analysis

of these measurements was accomplished by comparing the coincidences in a certain time

window (time bin) with the average side peak areas and using a maximum likelihood estima-

tion.4 A time bin of 2 ns was used in the concurrence evaluation and simulation of Figure 1

in the main paper, leading to the inclusion of almost all detected events. Whereas a time bin

of different duration does not produce appreciably different results at low temperatures (be-

cause we have tuned the FSS to negligible values and thermal cycling events are suppressed)

the tail in the coincidence histograms at higher temperatures is associated to spin scattering

and decoherence. This means that if the exciton photon is emitted about a nanosecond later

than the biexciton photon at elevated temperatures, the system was most probably in an ex-

cited state or in a dark exciton state before returning to the bright exciton state, resulting in

the loss of polarization and coherence. Hence, by evaluating the coincidence measurements

8



with a sufficiently long time bin, more of these events are included, resulting in a lower con-

currence for longer time bins, as shown in Figure 7. With a time bin of 8 ns practically all

delayed coincidences at a temperature of 64.4K are included in the concurrence evaluation.

However, it is of high importance that measurement evaluation and simulation (see section

“Photonic 2-qubit density matrix and concurrence”) consider the same time bin. Figure 7

shows good agreement between measurement and simulation for different time bins up to

40K. For temperatures > 40K the mismatch between theory and experiment is larger at the

8 ns time bin, due to fact that the theory does not take further excited states into account.

However, the main influence on the concurrence with the considered rate model of this work

comes from the ratios γ∗
PH/γX and ∆E/T .
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Figure 7: Concurrence obtained by evaluating the measurement (dots) with different time
bin widths (2 ns, 4 ns, 8 ns), which was also used in the simulations (dashed lines).
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Figure 8: Color coded PL spectra of the same QD treated in the main text at different
temperatures up to 64.4K. For enhancing the signal to noise ratio, at each temperature
the spectra of a polarization-resolved measurement were averaged. Two-photon-excitation
is used and residual laser stray light is seen between the XX and X lines. The spectral red
shift due to temperature is subtracted here.

Further excited states

Results of the main paper show that simulations start to deviate from the measurements at

higher temperatures. We attribute these deviations to the exclusion of further excited states

in the theoretical model. Figure 8 shows that at 40.4K and 64.4K transitions from additional

excited states (X∗∗ and X∗∗∗) start to appear in the micro-photoluminescence spectra. We

can extract from the measurements that X∗ lies 3.7meV above the X, the X∗∗ 4.1meV above

X∗, and X∗∗∗ 3.5meV above X∗∗. Further, we make use of the intensities extracted from the

PL spectra shown in Figure 8 to estimate the decay rate γX∗ . We use the relation

γX∗
∫
nX∗ dt

γX
∫
nX dt

∝ IX∗

IX
, (3)

where nX∗(nX) is the occupancy of the |X∗⟩(|X⟩) state and IX∗(IX) the extracted PL in-

tensities of X∗(X) lines. From the intensity ratio extracted out of the PL data we estimate
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the rate γX∗ ≈ 1
10 ns

. This value is also in good agreement with the theory results (see be-

low), where we get ∼ 8 ns and ∼ 15 ns lifetimes for the two bright X∗ states, which gives

an average recombination rate of (1/8 + 1/15)/2 ns−1 ≃ 0.1 ns−1. Further, we compare

biexciton and exciton intensity ratio from theory and experiment. Figure 9 shows that also

the simulated and measured XX/X ratios are of the same order and follow the trend of the

theory, indicating that the XX intensity becomes lower with higher temperatures due to

the population of the |XX∗⟩ hot states. This confirms that our kinetic model (see section:

“Transition processes and equation of motion”), equipped with the adopted energy splittings

and the calculated rates of phonon-assisted transitions (see section: “Phonon-assisted relax-

ation”), reflects well the thermal changes of the state occupation and, thus, the intensity of

the radiative transitions.
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Figure 9: Calculated and measured intensity ratios.
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Theoretical Model and Simulations

Modeling of quantum dot electronic structure
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Figure 10: A Cross-section of the modeled QD material composition with bottom interface
based on the AFM image of a representative nanohole. The color indicates the local x value
in Al1−xGaxAs.

We model the considered QDs based on available morphological data. We represent the

simulated QDs on an axis-wise uniform numerical grid of the local material composition

values. The shape of the lower AlGaAs-GaAs interface in the simulation comes directly

from atomic force microscopy (AFM) measurements of nanoholes left after droplet etching.

We assume that the top GaAs surface formed is flat. We then apply Gaussian averaging

with σ = 1.2 nm of the three-dimensional material composition profile to simulate the

interdiffusion of atoms at interfaces well described by normal diffusion. The resultant profile

of material composition (given by the value of x in Al1−xGaxAs) is shown in Figure 10 of

the Supplementary Material. Although the lattice mismatch of the considered materials is

minimal, we still calculate possible structural strain within the theory of continuous elasticity.

Then we also calculate the piezoelectric field, resulting from the shear strain generated at

the interface, with terms in piezoelectric polarization up to second order in strain-tensor

elements.
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Carrier eigenstates

For such a simulated structure, we calculate the eigenstates of electrons and holes using the

implementation of the multiband k ·p method within the envelope-function approximation5

described in Ref. 6. It includes effects caused by the spin-orbit interaction, structural strain,

and piezoelectric field. The explicit form of the Hamiltonian may be found in Ref. 7, while

material parameters used in calculations are given in Ref. 8 and references therein. Via

numerical diagonalization, we obtain the carrier eigenvalues and eigenvectors ψ in the form

of eight-component pseudospinors. Their components are the discretized envelope functions

within each of the eight considered subbands (conduction, heavy-hole, light-hole and spin-

orbit split off bands). We apply the time-reversal operation to the valence-band electron

eigenstates to obtain hole states.

By calculating a number of the lowest-energy states of both types of carriers, we determine

the density of their energy ladders. We find the splittings between the ground and first

excited states to be 2.93 meV and 17.2 meV for holes and electrons, respectively. We obtain

up to ∼ 20% variation of these splittings within possible inaccuracies in mapping the exact

dot morphology. We also find that weak strain and hence minimal nominal splitting of

heavy- and light-hole subbands lead to substantial hole subband mixing. While the hole

ground state is of a predominantly heavy-hole character with only a few percent (∼ 6%)

light-hole admixture, already the first excited state is almost fully mixed, with a total light

hole admixture of about 38 % (approx. contributions: 10.6 % |3/2⟩, 24.8 % |+1/2⟩, 13.4 %

|−1/2⟩, 50.9 % |−3/2⟩ for one of the states with the other being its spin-flipped counterpart).

This leads to the mismatch of spin bases between the ground and excited hole states with

pronounced consequences for the recombination and phonon-assisted relaxation.

Excitonic states

We use a basis of up to 56 electron and 56 hole eigenstates to construct the configuration

bases for carrier complexes. By diagonalizing Hamiltonians of Coulomb interaction and
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phenomenological electron-hole exchange interaction (with fine-structure splittings based on

the experimental data), we obtain the eigenstates of excitons and biexcitons.

For an accurate calculation, an infinite configuration basis would be needed. To obtain

satisfactorily convergent results, we repeat all calculations for excitons and biexcitons for an

increasing number of configurations. We then extrapolate the asymptotic behavior of the

results with a smooth function.

In such a way, we obtain the exciton binding energy equal to 19.4 meV. The much denser

ladder of hole states than electron ones leads to the fact that a large initial part of the exciton

spectrum consists of orbital states composed mainly of the electron in the ground state bound

with the hole in its successive excited states. The energy distance to the first excited shell

is ∼ 3 meV, which is reasonably in line with the 3.7 meV observed in the experiment. Each

orbital state corresponds to four eigenstates with different spin configurations. We also find

the biexciton binding energy to be EXX−2EX ≃ −3.4 meV, with relatively high uncertainty

as we are able to use maximally 40 electron and 40 hole states for the XX calculation (the

size of configuration space grows exponentially with the number of particles).

Next, we calculate the optical transition dipole moments9 and the corresponding oscillator

strengths (and state lifetimes)10 within the dipole approximation to determine the optical

properties of calculated eigenstates. In the case of the ground state, we are dealing with a

standard pair of dark states and a pair of bright states that couple to light predominantly

linearly polarized along the [110] and [110] axes. The substantial light-heavy hole mixing

within excited hole levels translates into pronounced mixing of heavy- and light-hole exciton

states in the excited shells.

Nominally, the bright states of an exciton are evenly mixed (through the electron-hole

exchange interaction) states that couple to circular polarizations. This results in eigenstates

emitting linearly polarized light. Light-hole admixtures (those of opposite spin, while those

with the spin aligned with the main heavy-hole contribution are dark) produce contributions

of opposite circular polarization to those nominally circular contributions. For a regular
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orbitally bright state, this leads to unequal oscillator strengths of the two states and mod-

ification of their polarization properties. Here, we deal with optical activity of states that

should be nominally dark, as they involve an odd wave-function envelope for the electron

and an even one for the hole. However, the light-hole admixture within the first excited hole

state involved here has an s-type symmetry, which enables optical transitions. The calcu-

lated radiative rates for the bright ground states are γX ≃ 1/350 ps−1, while for the excited

states we estimate the lifetimes to be ∼ 8 ns and ∼ 15 ns (uncertainty of extrapolation is

higher here). For the sake of model simplicity, we take an average rate (harmonic mean of

lifetimes) for these two equal 0.1 ns−1.

For the XX, we get γXX ≃ 1.74γX, which is very close to the ratio obtained experimentally.

Optical transitions from the excited levels are strongly affected by light-hole admixtures. As

mentioned, they result in mismatched spin configurations between the ground and excited

states. Additionally, as underlined in the discussion of X∗ transitions, these admixtures also

allow for transitions between states with nominally mismatched envelope parity. As a result,

we deal with recombination from XX∗ to both X and X∗ levels. For the XX∗ → X∗ one, we

get the total rate of ∼ 1/0.5 ns−1, while for other, XX∗ → X, we were able to estimate the

rate to be ∼ 1/20 ns−1. These values, however, are subject to greater uncertainty because,

in the case of the biexciton, we were able to use the basis of maximally 32 electron and 32

hole states. Nevertheless, these calculations justify the values of XX∗ recombination rates

adopted in the kinetic model.

Phonon-assisted relaxation

We consider the interaction of carriers with bulk acoustic phonons in the long-wavelength

limit. To this end, we take into account the deformation potential and piezoelectric couplings,

as described explicitly in Ref. 11. Both of these couplings enter the Hamiltonian through

a phonon-induced oscillating strain field. The coupling via the deformation potential is

calculated by inserting the phonon strain field into the Bir-Pikus Hamiltonian,12 while the
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Figure 11: Phonon-assisted hole relaxation rates as a function of transition energy. The black
lines show the rate for the reference QD model (solid and dashed for two different initial-final
spin configurations), while other lines correspond to modified QD volume. The vertical pale
line shows the X∗-X transition energy determined experimentally, and the horizontal line
shows the relaxation rate assumed in the kinetic model.

piezoelectric coupling is taken into account through the piezoelectric field induced by phonon-

induced shear strain. We calculate the transition rates within the Fermi golden rule. For a

transition between a pair of exciton states, the relaxation rate is obtained by summing all

the contributions for pairs of configuration basis components that differ in the state of one

of the particles (we consider only one-phonon processes). For this reason, the computation

is highly resource and time consuming and we are limited here to the basis of maximally 24

electron and 24 hole states.

Directly from the excitonic calculation, we get the relaxation rate of γ0
PH ∼ 4 ns−1.

However, this value is not well converged due to insufficient configuration basis size achievable

in our calculation, so the uncertainty is relatively high. Moreover, the calculated transition

energy differs from the experimentally determined one. This discrepancy indicates a slight

difference in geometry between the experimentally investigated QD and the model based

on the specific nanohole. While the other results are less sensitive to minor changes in
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dot morphology, the phonon relaxation rate strongly depends on the QD volume. This

dependence is because the considered transition falls on the quickly vanishing high-energy

tail of the phonon spectral density. To analyze this effect, in Figure 11 of the Supplementary

Material we show the hole relaxation rate from the first excited state to the ground state as

a function of the transition energy. Different line types correspond to different combinations

of spin states. The analysis of the transition rate in a single-particle language is largely

justified by the fact that the X state in 95 % consists of the e1h1 configuration, and the X∗

state in 94 % consists of e1h2 (where the numbers refer to the orbital states of the electron

and hole, respectively). The black curve corresponds to the reference dot, while the red and

blue curves with different saturation correspond to 10 % and 20 % smaller/larger QDs. We

notice that the rate γ0
PH = 1 ns−1 we assume in the kinetic model corresponds to a dot 10 %

larger than the reference one, which is well within the uncertainty associated with modeling

this type of nanostructure.

Most importantly, it should be noted that this relaxation is much slower than typically

expected for excitons confined in quantum dots. This feature is due to the large volume

of the dots considered here. Additionally, the calculations allowed us to establish an even

more important fact. Namely, all pairs of X∗ and X states (different combinations of spin

configurations) have comparable transition rates (differences within 40% margin according

to the excitonic calculation). It is caused by the above-described mismatch of the spin

configurations in the ground and excited exciton states, which results from the mixing of

valence subbands in the excited states of the hole. We exploit this fact in constructing the

kinetic model by assuming all transitions have the same rate.

Level structure and optical excitation

For our simulations, we extend the QD model presented in Ref. 13 by introducing further

states and a more detailed temperature dependence for the phonon-induced transition rates.

In addition to the standard biexciton-exciton-cascade, comprising the biexciton |XX⟩,
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two bright exciton states |XH/V ⟩ that couple to horizontally (H) and vertically (V ) polarized

light, and the ground state |G⟩, the model accounts for excited biexciton |XX∗⟩ and exciton

states |X∗⟩ as well as dark excitons |XD⟩. Furthermore, the biexciton is excited by a two-

photon resonant laser pulse with horizontal polarization. In a frame co-rotating with the

(central) laser frequency, the Hamiltonian describing the QD under TPE is given by

Ĥsys =
EB

2
(|XH⟩ ⟨XH |+ |XV ⟩ ⟨XV |) +

(
EB

2
+ ∆E

)
|X∗⟩ ⟨X∗|+∆E |XX∗⟩ ⟨XX∗|

+

(
EB

2
− δBD

)
|XD⟩ ⟨XD| −

ℏ
2
Ω(t)

(
σ̂H + σ̂†

H

) (4)

where the energy of the ground state is used as the zero of the energy scale. Note that, in this

rotating frame, the energy of the biexciton is also zero. Here, EB is the biexciton binding

energy, ∆E denotes the energy difference between the excited and ground exciton states,

and δBD is the bright-dark splitting. The parameter values EB = 4meV, ∆E = 3.7meV,

and δBD = 110 µeV14 are taken from measurements. For simplicity, the energy difference

between excited and ground biexciton is also set to ∆E. Furthermore, in accordance with

the experiment, the fine-structure splitting between the two bright excitons is zero.

In order to describe the experimentally determined intensity profile of the laser pulse,

the (real) pulse envelope

Ω(t) =
Θ√
2π σ

{
e−

1
2(

t−tL
σ )

2

+R

[
e−

1
2(

t−tL+tS
σ )

2

+ e−
1
2(

t−tL−tS
σ )

2
]}

(5)

is approximated as three subsequent Gaussian peaks, cf., Figure 12. Here, tL denotes the

time of the pulse maximum and Θ is the pulse area of the central peak. The corresponding

intensity I(t) ∝ Ω2(t) fits well to the pulse form in the experiment for the parameter set:

σ = 3.48 ps, R = 0.37, and tS = 12.4 ps. The optimal pulse area Θ ≈ 4.4π is determined nu-

merically by optimizing for the maximum biexciton occupation during the system dynamics.

Since a horizontal laser polarization is assumed the laser pulse couples to the QD transitions

described by the operator σ̂H = |G⟩ ⟨XH |+ |XH⟩ ⟨XX|.
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Figure 12: Pulse intensity determined in the experiment (red dots) and I(t) ∝ Ω2(t) accord-
ing to Equation (5) for σ = 3.48 ps, R = 0.37, and tS = 12.4 ps.

Transition processes and equation of motion

Radiative decay processes and temperature-dependent, phonon-induced transitions between

the QD states are incorporated into the model by Lindblad operators15

L(Ô,Γ) ρ̂ =
Γ

2

(
2 Ôρ̂Ô† − Ô†Ôρ̂− ρ̂Ô†Ô

)
, (6)

that act on the statistical operator ρ̂ of the QD. Here, the operator Ô is the QD operator

associated with the relevant processes that occurs with rate Γ.

The QD model presented in Figure 2(b) of the Main Text with all its states and transition
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processes is described by the Liouville-von-Neumann equation

d

dt
ρ̂ =Lsys ρ̂ := − i

ℏ

[
Ĥsys, ρ̂

]
+

∑
ℓ=H,V

{
L(|G⟩ ⟨Xℓ| , γX) + L(|Xℓ⟩ ⟨XX| , γXX

2
)
}
ρ̂

+
∑

ℓ=H,V

L(|Xℓ⟩ ⟨XX∗| , γXX∗
1
) ρ̂+ L(|X∗⟩ ⟨XX∗| , γXX∗

2
) ρ̂+ L(|XD⟩ ⟨XX∗| , γXX∗

D
) ρ̂

+ L(|G⟩ ⟨X∗| , γX∗) ρ̂+
∑

ℓ=H,V

{L(|Xℓ⟩ ⟨X∗| , γPH(T )) + L(|X∗⟩ ⟨Xℓ| , 4γ∗
PH(T ))} ρ̂

+ L(|XX⟩ ⟨XX∗| , γPH2(T )) ρ̂+ L(|XX∗⟩ ⟨XX| , 4γ∗
PH2(T )) ρ̂

+ L(|XD⟩ ⟨X∗| , 2γPHD
(T )) ρ̂+ L(|X∗⟩ ⟨XD| , 4γ∗

PHD
(T )) ρ̂

(7)

which governs the dynamics of the statistical operator ρ̂ of the QD. Here, [Â, B̂] denotes the

commutator of two operators Â and B̂. γX (γXX) is the rate associated with the radiative

decay of an exciton (the biexciton) that leads to the emission of an exciton (biexciton) photon

which is then detected in the coincidence measurement. The remaining radiative decay rates

γXX∗
1
, γXX∗

2
, γXX∗

D
, and γX∗ correspond to transitions involving excited states, where the

emitted photons do not appear in the coincedences.

Besides the radiative decay of various QD states, the model also accounts for transi-

tions between states due to phonon emission and absorption processes. The temperature

dependence of the corresponding rates

γPH(T ) = [1 + n(∆E, T )] γ0
PH ; γ∗

PH(T ) = n(∆E, T ) γ0
PH (8a)

γPH2(T ) = [1 + n(∆E, T )] γ0
PH ; γ∗

PH2(T ) = n(∆E, T ) γ0
PH (8b)

γPHD
(T ) = [1 + n(∆E + δBD, T )] γ

0
PH ; γ∗

PHD
(T ) = n(∆E + δBD, T ) γ

0
PH (8c)
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is determined by the expected number of phonons with energy E

n(E, T ) =

(
exp

[
E

kB T

]
− 1

)−1

(9)

excited at temperature T according to the Bose-Einstein statistics. For simplicity, we assume

the rate γ0
PH to be the same for all three phonon-induced transitions. Note that the prefactor

4 (2) in Equation (7) accounts for the fact that we assume four (two) energetically degenerate

excited exciton and biexciton (dark exciton) states that are represented by one effective state

|X∗⟩ and |XX∗⟩ (|XD⟩), respectively.

Equation (7) can be numerically solved based on its formal solution

ρ̂(t) = P0→t [ρ̂(0)] := T̂ exp

[∫ t

0

dt′Lsys

]
ρ̂(0) (10)

where the formal propagator P0→t is introduced, and T̂ denotes the time-ordering operator.

For all simulations, we assume the QD to be initially in its ground state |G⟩ before it is

excited by the TPE pulse.

The parameter values for the different rates that are employed in the simulations are listed

in Table 1 of the Main Text. Note that the rate γ0
PH is the only remaining fit parameter. It is

found that the temperature-dependent concurrence in the experiment can be well reproduced

using the parameter value γ0
PH = 1ns−1.

Photonic 2-qubit density matrix and concurrence

The quantum state tomography employed in the experiment is based on polarization-resolved

two-time coincidence measurements. The obtained signals in this reconstruction scheme

are theoretically described by two-time correlation functions which contain electric field

operators at different times. Because the exciton and biexciton photons detected in the

coincidence measurements stem from electronic transitions in the standard biexciton-exciton

cascade, the electric field operators are proportional to QD transition operators σ̂H/V =
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|G⟩ ⟨XH/V |+ |XH/V ⟩ ⟨XX|. Consequently, the measured signals are theoretically calculated

by evaluating correlation functions

G
(2)
jk,ℓm(t, τ) =

〈
σ̂†
j(t)σ̂

†
k(t+ τ)σ̂m(t+ τ)σ̂ℓ(t)

〉
= Tr

{
σ̂†
kσ̂mPt→t+τ

[
σ̂ℓP0→t [ρ̂(0)] σ̂

†
j

]}
, (11)

with {j, k, ℓ,m} ∈ {H, V }. Here, the time t is the (real) time of the first photon detection

event and τ denotes the delay time until the second one occurs.

In the experimental setup, one considers all (real) times t until the QD returns to its

ground state and accounts for all delay times τ that fall in a certain interval/time bin ∆t.

Thus, the (normalized) photonic 2-qubit density matrix ρ2q is calculated from time-integrated

correlation functions according to

ρ2qjk,ℓm =
G

(2)

jk,ℓm

Tr
{
G

(2)
} (12a)

G
(2)

jk,ℓm =

∞∫
0

dt

t0+∆t∫
t0

dτ G
(2)
jk,ℓm(t, τ), (12b)

where t0 is the starting time of the considered (delay) time bin.

Finally, the concurrence is directly calculated from the photonic 2-qubit density matrix

according to16

C = max
{
0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
, (13)

where λj ≥ λj+1 are the (real and positive) eigenvalues of the 4×4-matrix

M = ρ2q T (ρ2q)∗ T (14)

Here, (ρ2q)∗ denotes the complex conjugated 2-qubit density matrix, and T is the anti-

diagonal matrix with elements {−1, 1, 1,−1}. Note that the concurrence also depends on t0

and ∆t.
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For the simulations presented in Figure 1(e) of the Main Text, the time bin is always

set to ∆t = 2ns. Additionally, in Figure 7 of the Supplementary Material, the evaluation is

performed for three different time bins. In all these cases, delay times starting from t0 = 0

are considered. In order to describe the time-filtering analysis in Figure 3 of the Main Text,

numerical calculations with different starting times t0 = 0ps, 350 ps, 700 ps, 1050 ps and a

time bin of ∆t = 500 ps are performed.
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